Skip to main content

Irreducible Brillouin zone symmetry and interpolation.

Project description

brille

A C++ library for symmetry operations and linear interpolation within an irreducible part of the first Brillouin zone. Wrapped for use in python using pybind11.

irreducible polyhedron

When provided with the lattice parameters or basis vectors of a real space spacegroup and its Hall symbol or number as determined by, e.g., Spglib, brille can

  • construct the first Brillouin zone
  • determine its high symmetry points
  • find a irreducible polyhedron and verify that its conforms to the pointgroup symmetry of the spacegroup.

Constructing and irreducible Brillouin zone polyhedron for a face centered cubic lattice can be accomplished with, e.g.,

	import brille

	direct_lattice = brille.Direct((4.96, 4.96, 4.96), (90, 90, 90), 'Fd-3m')
	brillouin_zone = brille.BrillouinZone(direct_lattice.star)

interpolation

Interpolating eigenvalues and eigenvectors across a degenerate point could lead to misidentified equivalent modes. Since the eigenvectors are distinguishable at all points away from the high-symmetry directions, a hybrid orthogonal/triangulated grid defined in an irreducible part of the Brillouin zone can be used to avoid mode misidentification.

brille can construct

  • an orthogonal grid guaranteed to contain the first Brillouin zone
  • a triangulated set of points filling an irreducible polyhedron or the first Brillouin zone
  • or a hybrid orthogonal/triangulated grid where only the surface cells are triangulated to improve point location time while preserving polyhedral conformity.

Of these options the third is most appropriate for the interpolation of models used in the analysis of inelastic neutron scattering data is the hybrid grid.

Dependencies

TetGen

A modified version of TetGen is used to create refined tetrahedral meshes in the irreducible portion of the first Brillouin zone.

The modified version is included as part of this repository.

Installation

From the root folder of this repository use Python 3 to build and install this library.

python setup.py install

Alternatively, the python module, C++ library, and catch2 based tests can be built directly using cmake.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brille-0.5.2.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

brille-0.5.2-cp38-cp38-win_amd64.whl (889.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

brille-0.5.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

brille-0.5.2-cp38-cp38-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

brille-0.5.2-cp37-cp37m-win_amd64.whl (884.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

brille-0.5.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

brille-0.5.2-cp37-cp37m-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

brille-0.5.2-cp36-cp36m-win_amd64.whl (884.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

brille-0.5.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

brille-0.5.2-cp36-cp36m-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file brille-0.5.2.tar.gz.

File metadata

  • Download URL: brille-0.5.2.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for brille-0.5.2.tar.gz
Algorithm Hash digest
SHA256 5fb8fd10bf9885ed37797564c505b52c2eed0c990a92672e13e3286238065b09
MD5 0760a04e70ed5901e6f361887518cdbb
BLAKE2b-256 144f3a617ca12a346c305d65a5eee66a86e75cc7ea6f784eaf48cc4d5cbfa566

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: brille-0.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 889.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.10

File hashes

Hashes for brille-0.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e11b1bd437cf780d6fae653f0d4fe97657adf9925e9c80736c4b714a888dc741
MD5 d34fd45dbef3d5b0ed33d86c38c4b6a1
BLAKE2b-256 3b1408952725cc2c6445a9c0363c6261493fec582bb24f4cfa522553065a8ee4

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for brille-0.5.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b5d92963562d748c6456f40594de369df5bab3047f9f3653507230b25cdb2a2f
MD5 caa81e808138f90fcedac4f9dbc0507e
BLAKE2b-256 020f542cd33a16dda057c779e0cb85fc94f8c6364e78b802ae8ecd3fc1628149

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: brille-0.5.2-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.8.11

File hashes

Hashes for brille-0.5.2-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 188b860d0fca4c92e32b76ab37a886687e08999cbce4cff34fc0dc444b776bc6
MD5 478f57d7ecbc29f7bf81ea407775b7c4
BLAKE2b-256 90ebdc79df51f18896f159416cb2e84064b74692d4b9aedd335d6af0b37a0166

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: brille-0.5.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 884.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.7.9

File hashes

Hashes for brille-0.5.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bf7c8a0654b6257ac240cf596fe87d22a3838955e1fea198b35ce8bb0d1bbf06
MD5 8ed5ca51a7138fc3364392f0c566a5f4
BLAKE2b-256 81137aadd491dbcf57d0c4ed68debee5630415293d71299dc55f0d6bd077fcb4

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for brille-0.5.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ac6216b6010b2daec5c4f9d3f9f65001854db1ce733b88f91fc15e29ccf5bf8e
MD5 5f0194a38e093e9bc067b0dff8bebb94
BLAKE2b-256 0e8aecbb619dcde188e6877918620d1b8fe2c655f0df55fffb197afd24ac4071

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: brille-0.5.2-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.7.11

File hashes

Hashes for brille-0.5.2-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5501d665d47111d6e5f9fdf9b13378cfba3403c1abe0c1e00d796bf7928c1185
MD5 e815c9aabc30928681f82f1f6c598efc
BLAKE2b-256 e26460c5c05c4f24ccdc56229bed4cd36feff234b9d5020718971dbd2ff53809

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: brille-0.5.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 884.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.8

File hashes

Hashes for brille-0.5.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b41c06b8abb5a96ee52dac9539fe032c8fb319c4927cca2700a83ee55018e7c9
MD5 d48abbd822d413efc65e790fff2ef273
BLAKE2b-256 c2d58ae353c7478b417fbddc0bbc09900a8f8a8d05ef3fb713209bde0ad6664b

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for brille-0.5.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d086758454eb150118964488bcbe33922c61412088159a3d5d65d386f4c7ca77
MD5 528887e9490552302d2aea9048049341
BLAKE2b-256 f882baf01c4824b9c0eb66ac1cd8abeca6ca1edb42c1aaa6098b4a7a817283f3

See more details on using hashes here.

File details

Details for the file brille-0.5.2-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: brille-0.5.2-cp36-cp36m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.6.14

File hashes

Hashes for brille-0.5.2-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e69f2c30a92fbbf96847518f72eef77b32f2551d94f7c797dd3560b884deeca0
MD5 d3fe75ea3db744fcfce12796c95a9c9c
BLAKE2b-256 8c5a1761a5c5b5a520074e88082d109e0cf3f84b3812261e9622f59cef7d275c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page