Skip to main content

Image Quality

Project description

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

BRISQUE is a no-reference image quality score.

A good place to know how BRISQUE works : LearnOpenCV

Installation

# You will need to specify which version of OpenCV you intend to use with BRISQUE:
#   * opencv-python
#   * opencv-python-headless
#   * opencv-contrib-python
#   * opencv-contrib-python-headless
# You can do this with `pip install brisque[<YOUR CHOSEN VERSION HERE>]`, e.g.
pip install [opencv-python-headless]

Usage

  1. Trying to perform Image Quality Assessment on local images
from brisque.brisque import BRISQUE

obj = BRISQUE(url=False)
obj.score("<Ndarray of the Image>")
  1. Trying to perform Image Quality Assessment on web images
from brisque.brisque import BRISQUE

obj = BRISQUE(url=True)
obj.score("<URL for the Image>")

Example

Local Image

  • Input
from brisque.brisque import BRISQUE
import numpy as np
from PIL import Image

img_path = "brisque/tests/sample-image.jpg"
img = Image.open(img_path)
ndarray = np.asarray(img)

obj = BRISQUE(url=False)
obj.score(img=ndarray)
  • Output
34.84883848208594

URL

  • Input
from brisque.brisque import BRISQUE

URL = "https://www.mathworks.com/help/examples/images/win64/CalculateBRISQUEScoreUsingCustomFeatureModelExample_01.png"

obj = BRISQUE(url=True)
obj.score(URL)
  • Output
71.73427549219988

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brisque_opencv-0.0.17.tar.gz (141.4 kB view details)

Uploaded Source

Built Distribution

brisque_opencv-0.0.17-py3-none-any.whl (140.5 kB view details)

Uploaded Python 3

File details

Details for the file brisque_opencv-0.0.17.tar.gz.

File metadata

  • Download URL: brisque_opencv-0.0.17.tar.gz
  • Upload date:
  • Size: 141.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for brisque_opencv-0.0.17.tar.gz
Algorithm Hash digest
SHA256 2fc69f9b46179edaffe4c8f611ff7e38b1f12619570309e24b46d606afbce4e0
MD5 e02efc8707e6bc8339143fe218b5ee8b
BLAKE2b-256 87f032877e79035931f0a69d92bec3a73e617f25fd40bdf4ab2b237f7d2e3069

See more details on using hashes here.

File details

Details for the file brisque_opencv-0.0.17-py3-none-any.whl.

File metadata

File hashes

Hashes for brisque_opencv-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 cc18154f34df06d223773a116ab0d7cd838ebbba5d6d90994c710ef6e9f0fe72
MD5 89fc26e96dec225a5905b378479118c7
BLAKE2b-256 3b53ee13a3086ab4e2e8766bf5016a4e5ece902f085ca06569d476d5c512cbb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page