Skip to main content

Manages Android packages on a device through DataFrames

Project description

BeautifulSoup multiprocessing parsing to pandas DataFrame

Tested against Windows / Python 3.11 / Anaconda

pip install bs4multiproc

A Python library for parsing HTML content. It leverages various libraries and methods, including BeautifulSoup, pandas, multiprocessing, and subprocesses, to efficiently extract structured information from HTML documents.

What does it do?

HTML Parsing:

The library's primary purpose is to parse HTML content. It can handle both local HTML files and web-based HTML content retrieved via URLs.

Parallel Processing:

The library offers two main functions, parse_html_subprocess and parse_html_multiproc, to process HTML content in parallel. This parallelism can significantly speed up the parsing of multiple HTML documents.

DataFrame Output:

The library returns structured data in the form of pandas DataFrames. These DataFrames contain detailed information about HTML elements within the parsed content, such as tag names, attributes, text, and more.

Caching:

The script utilizes functools.cache for memoization, which can improve performance by avoiding unnecessary recomputation of previously processed data.

Advantages of the Library:

Efficiency:

Parallel processing is a key advantage of this library. It can distribute the parsing of multiple HTML documents across multiple CPU cores, making it significantly faster when dealing with a large number of documents.

Structured Data:

The library doesn't just parse HTML; it structures the data in a tabular format using DataFrames. This structured data can be easily analyzed, transformed, and used for various purposes.

Flexibility:

The library is flexible and can handle various input sources, including local files, web URLs, and multipart messages (e.g., email content).

Subprocess Support:

The parse_html_subprocess function allows you to offload the HTML parsing task to a separate subprocess. This can be useful when dealing with potentially untrusted or resource-intensive HTML content, as it isolates the parsing process.

Parallelism Control:

You can control the level of parallelism by specifying the number of processes and chunks. This flexibility allows you to fine-tune the performance based on your system's capabilities and specific requirements.

Caching:

The caching mechanism helps save time by reusing previously parsed results, especially when working with the same content repeatedly.

Cross-Platform:

The library supports both Windows and non-Windows environments, ensuring compatibility across different operating systems.

parse_html_subprocess

def parse_html_subprocess(html,chunks=2,processes=None):
	Parse HTML Content Using Subprocess

	This function takes a single HTML content as input, processes it using a subprocess,
	and returns a structured DataFrame containing information about HTML elements.
	It is suitable for parsing a single HTML document using subprocess-based parallelism.

	Parameters:
	- html (str or bytes): HTML content to be processed. It can be provided as a string, bytes, or a file path.
	- chunks (int, optional): The number of chunks to divide the HTML processing into.
	This can help optimize processing for large datasets. Default is 2.
	- processes (int, optional): The number of parallel processes to use for parsing.
	If not specified, it defaults to (number of CPU cores - 1).

	Returns:
	- pandas.DataFrame: A DataFrame containing information about HTML elements, such as tag names, attributes, text, and more.

parse_html_multiproc

def parse_html_multiproc(htmls, chunks=2, processes=5):
    r"""
    Parse HTML Content Using Multiprocessing

    This function takes a list of HTML content, processes it in parallel using the multiprocessing library,
    and returns a structured DataFrame containing information about HTML elements. It is suitable for
    parsing multiple HTML documents simultaneously.

    Parameters:
    - htmls (list): A list of HTML content to be processed. Each item in the list should represent HTML content, typically as strings or bytes.
    - chunks (int, optional): The number of chunks to divide the HTML processing into. This can help optimize processing for large datasets. Default is 2.
    - processes (int, optional): The number of parallel processes to use for parsing. If not specified, it defaults to (number of CPU cores - 1).

    Returns:
    - pandas.DataFrame: A DataFrame containing information about HTML elements, such as tag names, attributes, text, and more.
    """

Examples

import re
import sys

import bs4
from PrettyColorPrinter import add_printer
from bs4multiproc import parse_html_subprocess, parse_html_multiproc
import pandas as pd

add_printer(1)
from time import perf_counter

sys.setrecursionlimit(10000)
import numpy as np

if __name__ == "__main__":
    execute_examples = False
    if execute_examples:
        start = perf_counter()
        df1 = parse_html_multiproc(  # needs if __name__ == "__main__": !!!!
            htmls=[
                r"C:\Users\hansc\Downloads\bet365 - Apostas Desportivas Online.mhtml",
                "https://docs.python.org/3/library/multiprocessing.html",
                r"C:\Users\hansc\Downloads\Your Repositories.mhtml",
            ],
            chunks=1,
            processes=4,
        )
        end = perf_counter() - start

        start1 = perf_counter()
        df2 = parse_html_subprocess(  # doesn't need if __name__ == "__main__":
            html=[
                r"C:\Users\hansc\Downloads\bet365 - Apostas Desportivas Online.mhtml",
                "https://docs.python.org/3/library/multiprocessing.html",
                r"C:\Users\hansc\Downloads\Your Repositories.mhtml",
            ],
            chunks=1,
            processes=4,
        )
        end1 = perf_counter() - start1

        print(df1)
        print(df2)
        print(end, end1)
        df1.drop_duplicates(subset=["aa_h0", "aa_h1", "aa_h2", "aa_h3"]).aa_soup.apply(
            lambda x: g if (g := x.find_all("a")) else pd.NA
        ).dropna().ds_color_print_all()

    df = parse_html_multiproc(
        r"C:\Users\hansc\Downloads\bet365 - Apostas Desportivas Online2.mhtml",
        chunks=3,
        processes=4,
    )

    results = (
        df.loc[
            np.all(
                df[["aa_tag", "aa_value", "aa_attr"]].__array__()
                == np.array([["div", "ovm-Fixture-media", "class"]]),
                axis=1,
            )
        ]
        .aa_html.apply(
            lambda x: [
                [y.text]
                for y in bs4.BeautifulSoup(x).find_all(
                    re.compile(r"\b(?:span|div)\b"),
                    class_=re.compile(
                        "(?:ovm-ParticipantOddsOnly_Odds)|(?:ovm-FixtureDetailsTwoWay_TeamName)"
                    ),
                )
            ]
        )
        .apply(lambda q: [t[0] for t in q])
        .apply(pd.Series)
    ).reset_index(drop=True)
    print(results.to_string())
sys.setrecursionlimit(3000)

# Example - Odds - Live Games from bet365.com
#                               0                              1      2     3      4
# 0                      Criciúma                    Chapecoense   4.00  3.00   2.05
# 1                      Barbados             Dominican Republic    NaN   NaN    NaN
# 2             Trindade e Tobago                      Guatemala  11.00  4.75   1.33
# 3         CA Union Villa Krause              San Lorenzo Ullum   3.20  2.62   2.50
# 4                   Once Caldas            Jaguares de Córdoba   1.66  3.20   6.50
# 5             New Mexico United                 Memphis 901 FC   1.11  7.50  13.00
# 6                   FC Santiago           Huracanes Izcalli FC   2.75  3.60   2.20
# 7                Grupo Sherwood       Club Leones Huixquilucan   4.75  3.75   1.66
# 8                 Auckland City             Cashmere Technical   1.44  4.00   7.00
# 9                     Petone FC             Auckland United FC  12.00  8.00   1.11
# 10                  Árabe Unido         Sporting San Miguelito   3.50  2.30   2.75
# 11                    Udelas FC                    Union Cocle   3.50  1.61   5.50
# 12          Deportivo Maldonado                        Peñarol  29.00  5.00   1.18
# 13              Central Espanol                        Basanez   3.75  1.66   4.33
# 14     Argentina (JKey) Esports       Portugal (RuBIX) Esports   2.10  3.75   2.87
# 15  Eintracht (Aleksis) Esports  Dortmund (Kalibrikon) Esports   4.50  1.90   2.87
# 16   Germany (lowheels) Esports   France (DangerDim77) Esports   1.83  3.75   3.50
# 17          Lazio (Nio) Esports        Arsenal (Panic) Esports   1.80  5.00   3.00
# 18       Lens (General) Esports      Sevilla (Chemist) Esports   1.83  5.00   2.87

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bs4multiproc-0.10.tar.gz (48.0 kB view details)

Uploaded Source

Built Distribution

bs4multiproc-0.10-py3-none-any.whl (48.4 kB view details)

Uploaded Python 3

File details

Details for the file bs4multiproc-0.10.tar.gz.

File metadata

  • Download URL: bs4multiproc-0.10.tar.gz
  • Upload date:
  • Size: 48.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for bs4multiproc-0.10.tar.gz
Algorithm Hash digest
SHA256 b883501a91b06ab1bf743a1cd0ea848191b0a8a6d1d9a27ecd43392c0d5626eb
MD5 725788d2cc1ac28d805e43c3feb47ff0
BLAKE2b-256 37dda7669178fca19a7e182a68cd6ebac0ee282700ba0540f9de70dccfc6e836

See more details on using hashes here.

File details

Details for the file bs4multiproc-0.10-py3-none-any.whl.

File metadata

  • Download URL: bs4multiproc-0.10-py3-none-any.whl
  • Upload date:
  • Size: 48.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for bs4multiproc-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 849093141a342003655c7e46c658dbbb1baa0b32dacb1d21da77da98b4d151cc
MD5 091b937d5bc596ac4257c36570421ca1
BLAKE2b-256 9c785dad9a17069af1af65db1ff5ae29bf3308005dd58348808cadb399890b0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page