Skip to main content

BrainSuite statistics toolbox

Project description

[BrainSuite] (c) 2016 Statistics Toolbox (bss)
=========


The [BrainSuite] (c) statistics toolbox allows the application of advanced statistical models to surface, image and curve based outputs generated from BrainSuite. This enables population or group modeling of cortical or sulcal morphology. Some features of the toolbox are:

- a python interface for using [statsmodels] with [pandas] for a pure python implementation
- Ability to plot graphs, charts and visualizations on surfaces (coming soon)

T1-weighted MRI image processing and registration steps include cortical surface extraction
and alignment to a reference atlas using [SVReg], which performs surface-constrained volume registration of triangular meshes and image intensities.
BSS is then used to perform population level statistical analysis of various neuroimaging measures.



Features
----
* Volumetric TBM: voxel-wise analysis of the magnitude of the 3D deformation fields representing volumetric shrinking and expansions of MRI images in the atlas space.
* Surface TBM: vertex-wise analysis of the magnitude of the 3D deformation fields representing shrinking and expansions of cortical surfaces in the atlas space.
* ROI-based analysis: analysis of average gray matter thickness, surface area, and gray matter volume over a cortical ROI.
* Masking for hypothesis-driven testing: focal analysis of vertex-wise brain measures masked over an ROI based on a priori hypotheses.
* Deformation-based morphometry for diffusion images: voxel-wise analysis of quantitative diffusion characteristics (e.g., fractional anisotropy, mean diffusivity, radial diffusivity) resampled to a common atlas space using SVReg.

For the above analysis methods, BSS provides functions to fit linear regression models, ANOVA and hypothesis testing on the measures described above. Additionally, it enables testing interaction effects of different variables on brain imaging measures. In addition to testing for multiple comparison using the false discovery rate, BSS now supports permutation testing for multiple hypothesis testing.


Installation
----
Open a command line terminal and type ``pip install bss``.

Full souce code is available at [github.org/shjoshi/bss].

Dependencies
-----------
The ``pip install bss`` command should install the dependencies.
* [Python] 2.7
* [pandas], [statsmodels], [nibabel], [matplotlib]

Installation tips
-----------
We recommend installing bss in a virtual environment.
See [virtualenv], [conda] etc.

For those who do not have Python installed, we recommend [miniconda].
Install [miniconda] and then run ``pip install bss`` on the command line.


Installation tips
-----------
For usage, please refer to the [tutorials].


License
----

GNU [General Public License] v2.

[BrainSuite]:http://brainsuite.org
[python]:http://www.python.org
[Canopy]:https://www.enthought.com/products/canopy/
[statsmodels]:http://statsmodels.sourceforge.net
[pandas]:http://pandas.pydata.org
[github.org/shjoshi/bss]:https://github.org/shjoshi/bss
[nibabel]: http://nipy.org/nibabel/
[matplotlib]: http://matplotlib.org/
[virtualenv]: https://virtualenv.pypa.io/en/stable/
[conda]: http://conda.pydata.org/docs/using/envs.html
[miniconda]: http://conda.pydata.org/miniconda.html
[tutorials]: http://brainsuite.org/bsstutorials/
[General Public License]: https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
[SVReg]: http://brainsuite.org/processing/svreg/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bss-0.9.4.tar.gz (60.9 kB view details)

Uploaded Source

Built Distribution

bss-0.9.4-py2.py3-none-any.whl (108.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file bss-0.9.4.tar.gz.

File metadata

  • Download URL: bss-0.9.4.tar.gz
  • Upload date:
  • Size: 60.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for bss-0.9.4.tar.gz
Algorithm Hash digest
SHA256 d31db91b3a125aaa61db30d2a2b7268acd6f8076f584a1a916bc147723b48b19
MD5 d115494b357fb0be6bddbec078cd2492
BLAKE2b-256 12bdacec491239e3443b24792d8bcf9adcde76142e7b1da75a5f0354750947f2

See more details on using hashes here.

File details

Details for the file bss-0.9.4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for bss-0.9.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 011518a48f35ae69c5c71ae6abcb1defe6340411bff3a9dce442e88ad26afda7
MD5 1d598514a17b48251d186f1665047130
BLAKE2b-256 c394b1585e5bcaf98f0650a3ed4ee793d7bbf4b0809070e3f03023c887ab44ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page