Comphrensive Library for Binary Search Trees.
Project description
BSTq
BSTq is a comprehensive Python library dedicated to Binary Search Trees (BSTs). Designed to work with BSTs, this library offers a wide array of functions and utilities, rather than basic functions to work with binary search trees effortlessly.
This library has lots of functions which can be used to minimize your efforts for Binary Search Trees .
Install
pip install bstq
Usage
from bstq import *
Creating Binary Search Tree
The following class is used to create a BinarySearchTree and instanciate a tree object with root value of 10 .
class BinarySearchTree:
def __init__(self , data , left = None, right = None) :
self.data = data
self.left = left
self.right = right
root = BinarySearchTree(10)
Create Binary Search Tree from Sorted list.
You have to provide a sorted list which you will paas in the createBSTFromSortedList
, the function will return a root of the Binary Search Tree created from the list .
l = [11, 14, 36, 64, 69, 71, 83, 83] # sorted list.
root = createBSTFromSortedList(l)
print(root)
Output :
Sorted List : [11, 14, 36, 64, 69, 71, 83, 83]
64
__/ \__
14 71
/ \ / \
11 36 69 83
\
83
Create Binary Search Tree With given Height .
You can use createBSTWithHeight
function to create BST with given height.
bst = createBSTWithHeight(4)
print(bst)
Output :
8
______/ \_____
4 12
__/ \_ __/ \__
2 6 10 14
/ \ / \ / \ / \
1 3 5 7 9 11 13 15
InOrder , PreOrder , PostOrder , LevelOrder Traversals .
There are two methods for traversals , one is class based which is specific to class and another is global method for bst.
in_order = bst.inOrder() # class method
in_order = inOrder(bst) # global method
print(f"In Order : {in_order}")
pre_order = bst.preOrder() # class method
pre_order = preOrder(bst) # global method
print(f"Pre Order : {pre_order}")
post_order = bst.postOrder() # class method
post_order = postOrder(bst) # global method
print(f"Post Order : {post_order}")
level_order = bst.levelOrder() # class method
level_order = levelOrder(bst) # global method
print(f"Level Order : {level_order}")
Output :
In Order : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Pre Order : [8, 4, 2, 1, 3, 6, 5, 7, 12, 10, 9, 11, 14, 13, 15]
Post Order : [1, 3, 2, 5, 7, 6, 4, 9, 11, 10, 13, 15, 14, 12, 8]
Level Order : [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]
List Level Order Traversal
This function gives the list of all the levels of bst .
level_order_list = bst.levelOrderList()
level_order_list = levelOrderList(bst)
print(level_order_list)
Output :
[[8], [4, 12], [2, 6, 10, 14], [1, 3, 5, 7, 9, 11, 13, 15]]
Search in bst
node = searchInBST(bst , 6)
node = bst.searchInBST(6)
print(node)
Ouput :
6
/ \
5 7
Height of bst
h = bst.height()
h = height(bst)
Output :
4
Printing Binary Tree
You will get the most prettiest display of Binary Search Tree .
printBTree(bst) # global function
print(bst) # you can also use print function directly .
Output :
8
______/ \_____
4 12
__/ \_ __/ \__
2 6 10 14
/ \ / \ / \ / \
1 3 5 7 9 11 13 15
Printing the Binary Search Tree Horizontally Flipped .
You cannot use the print function , you have to use printBTree()
with inverted parameter to be True
printBTree(bst , inverted = True)
Output :
1 3 5 7 9 11 13 15
\ / \ / \ / \ /
2 6 10 14
¯¯\ /¯ ¯¯\ /¯¯
4 12
¯¯¯¯¯¯\ /¯¯¯¯¯
8
Invert BST
Invertes the binary search tree to its mirror image .
inverted_tree = invertBST(bst)
print(inverted_tree)
8
______/ \______
12 4
__/ \__ __/ \_
14 10 6 2
/ \ / \ / \ / \
15 13 11 9 7 5 3 1
Top View of BST
top_view = topViewOfBST(bst)
print(top_view)
Output :
[1, 2, 4, 8, 12, 14, 15]
Delete Node in BST
Gives and new node with delete bst and also deletes from the actual one.
new_bst = deleteNodeInBST(bst , 6)
print(new_bst)
Output :
8
_____/ \_____
4 12
/ \ __/ \__
2 5 10 14
/ \ \ / \ / \
1 3 7 9 11 13 15
Distance of Node From Root
distance = findDistanceFromRoot(bst , 7)
print(distance)
Output :
3
Binary Search Tree to Doubly Linked List
doubly_linked_list = bstToDLL(bst)
print(doubly_linked_list)
Output :
1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> 10 -> 11 -> 12 -> 13 -> 14 -> 15
Linked List Enumeration
The function enumerateLinkedList(doubly_linked_list)
is used to enumerate through the linked list . It gives three items in the tuple of list that is (index , node , node_data)
new_bst = createBSTWithHeight(2)
# created new bst with height of 2 .
doubly_linked_list = bstToDLL(new_bst)
for index , node , data in enumerateLinkedList(doubly_linked_list) :
print(f"index : {index} , node : {node} , node data : {data}")
Output :
index : 0 , node : LinkedListNode(data = 1 , prev = . , next = 2) , node data : 1
index : 1 , node : LinkedListNode(data = 2 , prev = 1 , next = 3) , node data : 2
index : 2 , node : LinkedListNode(data = 3 , prev = 2 , next = .) , node data : 3
Serialization and Deserialization Of Binary Search Tree.
The library has BSTSerializer
class which is used for Binary Tree Serialization and DeSerialization .
There are two functions in the class serialize()
which returns a string of serialied binary serach tree and deSerialize()
which returns the root of the deSerialized Binary Search Tree .
serializer = BSTSerializer()
serialized_string = serializer.serialize(bst)
print(f" Serialized BST String : {serialized_string}") # serialized string
deserialized_bst = serializer.deSerialize(serialized_string) # root of the binary tree.
print(f"Deserialized Binary Search Tree ")
print(deserialized_bst)
Output :
Serialized BST String : 8.4.2.1.N.N.3.N.N.6.5.N.N.7.N.N.12.10.9.N.N.11.N.N.14.13.N.N.15.N
Deserialized Binary Search Tree
8
______/ \_____
4 12
__/ \_ __/ \__
2 6 10 14
/ \ / \ / \ / \
1 3 5 7 9 11 13 15
There are more functions in the library to work with .
isBST(root)
: The function checks whether the given tree is BST or not .
bstSum
: The function gives the sum of all the values of the Binary Search Tree .
diameterOfBST
: The function gives the biggest path of the tree or the diameter of the tree .
kThSmallestElement
: The function gives the kth smallest element in the bst .
kThLargetElement
: The function gives the kth largest element in the bst.
findMinInBST
: The function gives the smallest node in BST.
findMaxInBST
: The function gives the largest node in BST.
is_bst = isBST(bst)
print(f"Is Bst : {is_bst}")
bst_sum = bstSum(bst)
print(bst)
print(f"Sum of nodes of the Binary Search Tree : {bst_sum}")
diameter_of_bst = diameterOfBST(bst)
print(f"Diameter of Binary Search Tree: {diameter_of_bst}")
kth_smallest = kThSmallestNode(bst , 6)
print(f"k th smallest node in Binary Search Tree :\n{kth_smallest}")
kth_largest = kThLargestNode(bst , 4)
print(f"k th largest node in Binary Search Tree: \n{kth_largest}")
min_element = findMinInBST(bst)
print(f"Minimum value in BST : \n{min_element}")
max_element = findMaxInBST(bst)
print(f"Maximum value in BST : \n{max_element}")
Output :
Is Bst : True
Sum of nodes of the Binary Search Tree : 496
Diameter of Binary Search Tree: 8
k th smallest node in Binary Search Tree :
6
/ \
5 7
k th largest node in Binary Search Tree:
28
__/ \__
26 30
/ \ / \
25 27 29 31
Minimum value in BST :
1
Maximum value in BST :
15
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bstq-1.0.1.tar.gz
.
File metadata
- Download URL: bstq-1.0.1.tar.gz
- Upload date:
- Size: 13.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 58c1bdc795355322883d57a7b2b5b06d9a32af1d33eddd3dd1a350e07076f264 |
|
MD5 | c1cc0ac23176db98f322f17e2e8717de |
|
BLAKE2b-256 | 4b224f7384ac8d64d4c48529f9c48efc472d9990ca75e0cc263de72089ddfc87 |
File details
Details for the file bstq-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: bstq-1.0.1-py3-none-any.whl
- Upload date:
- Size: 11.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d16977b66bdc8574461680a8744012aea4be98908f04ea45ac2cb866839c803 |
|
MD5 | 0a88aba6d458abc39af7a120d97112af |
|
BLAKE2b-256 | 603a5fc166f3c8c931b852113d2a0e25a621c739c034599278b5327059b42646 |