Skip to main content

A flexible backtesting framework for Python

Project description

Build Status PyPI Version PyPI License

bt - Flexible Backtesting for Python

bt is currently in alpha stage - if you find a bug, please submit an issue.

Read the docs here: http://pmorissette.github.io/bt.

What is bt?

bt is a flexible backtesting framework for Python used to test quantitative trading strategies. Backtesting is the process of testing a strategy over a given data set. This framework allows you to easily create strategies that mix and match different Algos. It aims to foster the creation of easily testable, re-usable and flexible blocks of strategy logic to facilitate the rapid development of complex trading strategies.

The goal: to save quants from re-inventing the wheel and let them focus on the important part of the job - strategy development.

bt is coded in Python and joins a vibrant and rich ecosystem for data analysis. Numerous libraries exist for machine learning, signal processing and statistics and can be leveraged to avoid re-inventing the wheel - something that happens all too often when using other languages that don't have the same wealth of high-quality, open-source projects.

bt is built atop ffn - a financial function library for Python. Check it out!

Features

  • Tree Structure The tree structure facilitates the construction and composition of complex algorithmic trading strategies that are modular and re-usable. Furthermore, each tree Node has its own price index that can be used by Algos to determine a Node's allocation.

  • Algorithm Stacks Algos and AlgoStacks are another core feature that facilitate the creation of modular and re-usable strategy logic. Due to their modularity, these logic blocks are also easier to test - an important step in building robust financial solutions.

  • Charting and Reporting bt also provides many useful charting functions that help visualize backtest results. We also plan to add more charts, tables and report formats in the future, such as automatically generated PDF reports.

  • Detailed Statistics Furthermore, bt calculates a bunch of stats relating to a backtest and offers a quick way to compare these various statistics across many different backtests via Results display methods.

Roadmap

Future development efforts will focus on:

  • Speed Due to the flexible nature of bt, a trade-off had to be made between usability and performance. Usability will always be the priority, but we do wish to enhance the performance as much as possible.

  • Algos We will also be developing more algorithms as time goes on. We also encourage anyone to contribute their own algos as well.

  • Charting and Reporting This is another area we wish to constantly improve on as reporting is an important aspect of the job. Charting and reporting also facilitate finding bugs in strategy logic.

Installing bt

The easiest way to install bt is from the Python Package Index using pip:

pip install bt

Since bt has many dependencies, we strongly recommend installing the Anaconda Scientific Python Distribution, especially on Windows. This distribution comes with many of the required packages pre-installed, including pip. Once Anaconda is installed, the above command should complete the installation.

Recommended Setup

We believe the best environment to develop with bt is the IPython Notebook. From their homepage, the IPython Notebook is:

"[...] a web-based interactive computational environment
where you can combine code execution, text, mathematics, plots and rich
media into a single document [...]"

This environment allows you to plot your charts in-line and also allows you to easily add surrounding text with Markdown. You can easily create Notebooks that you can share with colleagues and you can also save them as PDFs. If you are not yet convinced, head over to their website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bt-1.1.0.tar.gz (262.0 kB view details)

Uploaded Source

Built Distributions

bt-1.1.0-cp312-cp312-win_amd64.whl (212.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

bt-1.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

bt-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

bt-1.1.0-cp312-cp312-macosx_11_0_arm64.whl (240.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

bt-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl (257.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

bt-1.1.0-cp311-cp311-win_amd64.whl (214.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

bt-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

bt-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

bt-1.1.0-cp311-cp311-macosx_11_0_arm64.whl (245.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

bt-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl (266.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

bt-1.1.0-cp310-cp310-win_amd64.whl (214.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

bt-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

bt-1.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

bt-1.1.0-cp310-cp310-macosx_11_0_arm64.whl (244.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

bt-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl (265.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

bt-1.1.0-cp39-cp39-win_amd64.whl (214.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

bt-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

bt-1.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

bt-1.1.0-cp39-cp39-macosx_11_0_arm64.whl (244.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

bt-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (265.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

bt-1.1.0-cp38-cp38-win_amd64.whl (215.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

bt-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

bt-1.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

bt-1.1.0-cp38-cp38-macosx_11_0_arm64.whl (242.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

bt-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (262.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file bt-1.1.0.tar.gz.

File metadata

  • Download URL: bt-1.1.0.tar.gz
  • Upload date:
  • Size: 262.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0.tar.gz
Algorithm Hash digest
SHA256 201eb9a5723d9ca6426a6e96f7213ae9d2f5d2aa7934069fc466cc32dbf46b78
MD5 3fadebfc031de067bae5e1883219dbb4
BLAKE2b-256 7d00c7fc98b7857689326e008872563d393f06f818497818daa3ff53cd6f50dd

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: bt-1.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 212.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 df537e0526a3fc9485f4705e88d8a82a567ac2107dbbc420ae9805fe5ed599c4
MD5 1ee4dfc550b5e332ce2bf3f8cdec12da
BLAKE2b-256 e7ada3747b478f2b3eef7839f40782049299efd715c9c7c32d8569bac47574b9

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e51d02f51c40bf543040e9b651c39edea0fa44a8a734a467382e35f87b82bfb0
MD5 ddb29b16e5017be369e2d63460472c53
BLAKE2b-256 5beb28edc01c2b671d36ddb617a46a6efc12694315a7558355069d801fc97ae4

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bd0861653ffa4cb620355289a3742e7945ddbaefb90b50f626eb407f2e47f1b4
MD5 9d5732707b22d39abe41a1734540301c
BLAKE2b-256 cb093e5ca03827a5895121df09a76bd59161263092887e51879afefe4eedaa96

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95fcf166e870a9d6ec5620bb947b34ad28c83dbc4d057feb5db2d0cc4db607a7
MD5 4fcc1a3e30fb4db7212c7bdc1c0a0250
BLAKE2b-256 454ff1417c42fdf8887b95304e777439bed94ccabdac990981bf6d271469b656

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 099efde3db7dca85e4c6f020afc9a08f02eb6ba79903c6c3bdfae5e0d2ab56d7
MD5 713fd4395a7c4dc15b4aedd2e3ab715b
BLAKE2b-256 af0d13ebfd475e9498c26c843031f7fcac9f377d49cf2f93a4c0551b5c68d073

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: bt-1.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 214.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b1b9fbcfd4631813b068a56421aa99cc502da3ec91ff69167190afd60e521f4b
MD5 e66e61ed6ca9f824bcfb6fde19012d05
BLAKE2b-256 ac6a2fcc1524ddfca7eb84ef23d99247ecb8ddb5cdc15eb9666c09c5739fb32f

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f413268e7fc3decf51e0514674e9bc83018ce4efb5617756cb1598fda7bd04d3
MD5 1b0b2bfd12bf1564d727a80979c4b8e5
BLAKE2b-256 54a6e47ee31dcb9e7c8524507e7d3aa1571feeeb97ba1feca6a9624c63e2f054

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba77e767d64a5aa7dd7a31849678937f930a27fc8a645a07e6c1d260709c9ebc
MD5 9f942a51703b1a2a007673ef049d32e6
BLAKE2b-256 12b62ddcb1003fc1795fa7feaf1ecdfbcf877934889c67af5865c66fa2dc9715

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2541e612674ba681a5ac87e3e464f91e2ed8e9f95cc6d1048790d651d19a7c47
MD5 dbfea8f116fe3a2c43061b3c8e64ae69
BLAKE2b-256 e1e091d31b227e291dcb3a5cb0037eabb65e4d66f38d3f8b30e5c715229d5cf3

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 505e60bd4c938376371c457ffaab22346a9c64e4c10b22aba8359489595745d4
MD5 ddeb62d396517d388a461f4a32846004
BLAKE2b-256 8530111cf8563bb50be07ca6456d5763db53e9be504c4e60c0f8edc87c86fefd

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: bt-1.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 214.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bf7594020059dadcc56a86d00bd4121bbd7140815226d6e7c5ad004643aaea6d
MD5 5cad3cbcd6b011f9e2acfde83fbc5dc1
BLAKE2b-256 543b0d2ca3e5917c2a21f9879f76baa09320a61382c0e053dfb0a6933e809dba

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9434aa113f4863ebcac8e1ac5752dfc27fb0747ebb3ad6399059777e5594ca9e
MD5 7594200de6b970630ae82f3c49c223ba
BLAKE2b-256 1c4cffd5fcbf0b0ae17541d233dc652dde66aa4509458546dcac16c7f2f82423

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9b7dbbbe828e17aff2396b1534f09832b0cdef39bac44cc47f54a247731de9fb
MD5 d08ceb0d66716aa819b53d65bc83a34e
BLAKE2b-256 2fb29295fd029b6f4d9a91b7c7259db614c2f3e7e4b391a2cb8cf91f6b9decd7

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8da0412bbd027b41c6cf40ab13f52e176ba777e513acec1a6f8fc521eb30bee
MD5 186effbfcf96ec9ca6cc1ddc4d036502
BLAKE2b-256 eb981b070d1065e74efd71b910fe4cd8a222b40398fd78652bb555f8df92d4dd

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7905b78ed3bca28ca925d8b007a3367f219a03db26aa5efc0681720f5abf846
MD5 1941c59ae0df004909c519879541470d
BLAKE2b-256 9fd3a1a29260718b9e03888f4ce90f85ff7f94d1f32ea5a02bf8c88b47aa30e0

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: bt-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 214.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b428c71dacd1f0846a417f8dd676b35327961490c011f6fceca2fcaff86959ce
MD5 19b17a058d33b5bf0032ffa8a4f63826
BLAKE2b-256 525d127e382da1d8e80bb25a3fb3fe4644e2d5ab705f787ed498b8cae94feab1

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 024580de11e5c84781704336465dc1b25b84db55a904d896b494672f0a58415a
MD5 c5123c15c83855577a9f1335bec3174e
BLAKE2b-256 840aaef91db70af5701524c58f2abd6e089cfe1c78f701fc70fa095b8cde6ece

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9dc1b7678c9604f4c04aed18719e713da83e3375c90e8bc9f349349e3490cb20
MD5 27a61c897312c48df6337898bd52edae
BLAKE2b-256 61e9bc5cf27a710a7b3868f0c0211c7e9b8de25e387bf2d3d33754c52df6ace9

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bt-1.1.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 244.4 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a49fec8db3a4e8618c2a7e56dfdef73b460a089b386d5ea06cd5d2640249d20
MD5 2728f1e5df19067b1922125a57ed60ce
BLAKE2b-256 af468c34ecce5ab57807a302c1711808874baf7445acb35e4d6038ff683aa08f

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cda40df04ceaef2d82b6fba7853f46b323e1499a7f6723886a06b7ddf691217c
MD5 270935c0d20d4bb85d8555a27af77062
BLAKE2b-256 752d568aceb1f7ccaede26ee3ff16a7fde7959c04e62157eb9be25119ef2f1e2

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: bt-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 215.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4407e48b032511eacf1d06fe7f21170ff4e4fca10a58a214c57011e39a7c0d77
MD5 961e8f1a04f3a933a828c49094b64d88
BLAKE2b-256 37ee96b2e2552601e155e1ae24eceda76f3217b54d291eb9fe90d6ace2ceb02f

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83c6fd60460b10770f7276e7b357006c8e0ede6cf20b80bc6b6a9ded52ae6001
MD5 40b6e16ae8b17e1d9386320e6dfdb930
BLAKE2b-256 65b8a3ab409a9816bbf10d3b558a6c2295d764e6dd14b0ae271e24da7dae602c

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39bbe9bce850d9994c57b1c4e35c31142cc88faf1b521d05b06c91cc925e0e77
MD5 ad3524c534794fd1d03a3e3c53016b5c
BLAKE2b-256 6c6ea7e68c782679f95388cfc238c52974a2e9af313bfe5e7efe8ade765928b6

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: bt-1.1.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 242.8 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.9

File hashes

Hashes for bt-1.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3cb2a1f500dd92146e730a5564624fd1143be5b9330140e18d5d6845f8f48543
MD5 082919ab6ef216ab72f67467739d44fe
BLAKE2b-256 81fe015d81dffaa99d5b6b88250f009f9235a8ab805753a35adeaca6b2b00622

See more details on using hashes here.

File details

Details for the file bt-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for bt-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16e402f30840de7b936948e59dfe0a6b33a198bda2a9a3ed98eef6e18ca8c68d
MD5 5354dc79ec5ece4ccfd1737b9b169acc
BLAKE2b-256 a980e0bd1d4e40648811523d59bee906fa88da372b3da5152cc8e58d9aec5eab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page