Bucketed Scene Flow Evaluation
Project description
Bucketed Scene Flow Evaluation
This repo provides the official implementation of Bucket Normalized EPE, as described in our paper I Can't Believe It's Not Scene Flow!
This repo provides:
- A speed and class aware evaluation protocol called Bucket Normalized EPE. See our paper for more details.
- A standardized interface for working with Scene Flow datasets.
- Evaulation infrastructure for the Argoverse 2 2024 Scene Flow Challenge.
Currently supported datasets:
- Argoverse 2 (Human Labeled and NSFP Pseudolabeled)
- Waymo Open (LiDAR only)
- NuScenes (LiDAR only, beta)
If you use this repository as part of a publication, please cite:
@inproceedings{khatri2024trackflow,
author = {Khatri, Ishan and Vedder, Kyle and Peri, Neehar and Ramanan, Deva and Hays, James},
title = {{I Can't Believe It's Not Scene Flow!}},
journal = {European Conference on Computer Vision (ECCV)},
year = {2024},
pdf = {https://arxiv.org/abs/2403.04739},
website={http://vedder.io/trackflow.html},
}
Installation
pip install bucketed-scene-flow-eval
Setup
Follow our Getting Started for setup instructions.
Demo
We provide a demo script which shows off the various features of the API.
Argoverse 2:
To render the lidar and multiple camera views of an Argoverse 2 sequence in 3D, run:
python scripts/demo_3d.py --dataset Argoverse2CausalSceneFlow --root_dir /efs/argoverse2/val/ --with_rgb --sequence_length 4
To render RGB frames with lidar imposed on top, run:
python scripts/demo_rgb.py --dataset Argoverse2SceneFlow --mode project_lidar --reduction_factor 16 --root_dir /efs/argoverse2/val --sequence_length 150 --save_dir /efs/av2_camera_render/
To render the flow field of an Argoverse 2 sequence, run:
python scripts/demo_rgb.py --dataset Argoverse2SceneFlow --mode project_flow --reduction_factor 16 --root_dir /efs/argoverse2/val --sequence_length 150 --save_dir /efs/av2_camera_render/ --flow_dir <path to method flow output>
Waymo Open:
python scripts/demo.py --dataset WaymoOpenSceneFlow --root_dir /efs/waymo_open_processed_flow/validation/
Evaluating AV2 flow submissions
To evaluate an AV2 Scene Flow challenge entry named ./submission_val.zip
against validation dataset masks /efs/argoverse2/val_official_masks.zip
, run
python scripts/av2_eval.py /efs/argoverse2/val /efs/argoverse2/val_official_masks.zip ./submission_val.zip
Documentation
See docs/
for more documentation .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bucketed_scene_flow_eval-2.0.25.tar.gz
.
File metadata
- Download URL: bucketed_scene_flow_eval-2.0.25.tar.gz
- Upload date:
- Size: 61.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d49cf1b14308c88c279e08679657e13eb34423688cc8c9b3b515a23f2554491 |
|
MD5 | 5eb40ce6259b38f5912893742e6a1c22 |
|
BLAKE2b-256 | b797b6e608d6c4dbc4db81207ab723dcef96dd02ecc1950ff8bc6c56b16fa3a3 |
File details
Details for the file bucketed_scene_flow_eval-2.0.25-py3-none-any.whl
.
File metadata
- Download URL: bucketed_scene_flow_eval-2.0.25-py3-none-any.whl
- Upload date:
- Size: 71.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2591d4526fa28f76ef6bb23829ef0f854ade634e456df71f62ccbc023db3e133 |
|
MD5 | a12ede1a5420deb86e7e95b6b0d7496c |
|
BLAKE2b-256 | 9f81fa34c132edae6fa7fdf369e86ea16ba50da93b8c4bf680663b6991de1108 |