Building footprint segmentation from satellite and aerial imagery
Project description
Building Footprint Segmentation
Library to train building footprint on satellite and aerial imagery.
Installation
pip install building-footprint-segmentation
Dataset
Training
-
Train With Config , Use config template for generating training config
Visualize Training
Test images at end of every epoch
- Follow Example
Visualizing on Tensorboard
from building_footprint_segmentation.helpers.callbacks import CallbackList, TensorBoardCallback
where_to_log_the_callback = r"path_to_log_callback"
callbacks = CallbackList()
# Ouptut from all the callbacks caller will be stored at the path specified in log_dir
callbacks.append(TensorBoardCallback(where_to_log_the_callback))
To view Tensorboard dash board
tensorboard --logdir="path_to_log_callback"
Defining Custom Callback
from building_footprint_segmentation.helpers.callbacks import CallbackList, Callback
class CustomCallback(Callback):
def __init__(self, log_dir):
super().__init__(log_dir)
where_to_log_the_callback = r"path_to_log_callback"
callbacks = CallbackList()
# Ouptut from all the callbacks caller will be stored at the path specified in log_dir
callbacks.append(CustomCallback(where_to_log_the_callback))
Split the images in smaller sample
import glob
import os
from image_fragment.fragment import ImageFragment
# FOR .jpg, .png, .jpeg
from imageio import imread, imsave
# FOR .tiff
from tifffile import imread, imsave
ORIGINAL_DIM_OF_IMAGE = (1500, 1500, 3)
CROP_TO_DIM = (384, 384, 3)
image_fragment = ImageFragment.image_fragment_3d(
fragment_size=(384, 384, 3), org_size=ORIGINAL_DIM_OF_IMAGE
)
IMAGE_DIR = r"pth\to\input\dir"
SAVE_DIR = r"pth\to\save\dir"
for file in glob.glob(
os.path.join(IMAGE_DIR, "*")
):
image = imread(file)
for i, fragment in enumerate(image_fragment):
# GET DATA THAT BELONGS TO THE FRAGMENT
fragmented_image = fragment.get_fragment_data(image)
imsave(
os.path.join(
SAVE_DIR,
f"{i}_{os.path.basename(file)}",
),
fragmented_image,
)
Segmentation for building footprint
- binary
- building with boundary (multi class segmentation)
Weight File
Commonly used utility task when working with Geotiff
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file building-footprint-segmentation-0.2.4.tar.gz
.
File metadata
- Download URL: building-footprint-segmentation-0.2.4.tar.gz
- Upload date:
- Size: 26.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73472a9a9d32cfeaa184f957ffd4cbe2d0afc3fbf1ea520f613e5c11b2b60e8b |
|
MD5 | 7796b8ea9d289b61d2453719145bb31c |
|
BLAKE2b-256 | 9f78c86fc6505e6116d66aad8ef56e188042fc22eb19e0c7cf4b46bc04b51154 |
File details
Details for the file building_footprint_segmentation-0.2.4-py3-none-any.whl
.
File metadata
- Download URL: building_footprint_segmentation-0.2.4-py3-none-any.whl
- Upload date:
- Size: 35.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b88dde2f15f3d139324eca126cad544195caa9051069797ea80ab0d59a3b356 |
|
MD5 | 566174e61ce57eed7e84096543114615 |
|
BLAKE2b-256 | e62c33ff8ca58a6d47f107a095ea41eeb3c116ee04fd309fcaf27a78d4ee9af2 |