Skip to main content

A framework to benchmark safety in Reinforcement Learning.

Project description

Bullet-Safety-Gym

Python 3.8+ PyPI Downloads License

:warning: Notes: This repo requires gymnasium>=0.26.3 API version due to the major changes in the reset and step functions. Check this release note for details. For gym>=0.26 version, please use the gym-v26 branch. For the old API (gym<0.26) version, please use the old_api branch which requires gym==0.23.1.

"Bullet-Safety-Gym" is a free and open-source framework to benchmark and assess safety specifications in Reinforcement Learning (RL) problems.

Yet another Gym?

Benchmarks are inevitable in order to assess the scientific progress. In recent years, a plethora of benchmarks frameworks has emerged but we felt that the following points have not been sufficiently answered yet:

  • Increasing awareness of safety in AI: The number of publications regarding safety is rising. While deep RL is making big strides out of its infancy, a majority of environments considers only reward maximization and have no explicit connection to safety concepts.
  • Unified repository: Although diverse safety environments have been used in recent works, repositories that unify and standardize them into one framework are scarce, e.g. Ray et al. 2019)

  • Strong Reproducibility: Many state-of-the-art RL papers do not rely on open-source software, which may slow down the pace of research compared to when experiments were freely accessible to everyone. For a recent and hot discussion about reproducibility, see the following ICLR review posted on Reddit

Implemented Agents

Bullet-Safety-Gym is shipped with the following four agents:

  • Ball: A spherical shaped agent which can freely move on the xy-plane.
  • Car: A four-wheeled agent based on MIT's Racecar.
  • Drone: An air vehicle based on the AscTec Hummingbird quadrotor.
  • Ant: A four-legged animal with a spherical torso.
Ball Car Drone Ant
Ball Car Agent Drone Agent Ant Agent

Tasks

  • Circle: Agents are expected to move on a circle in clock-wise direction (as proposed by Achiam et al. (2017)). The reward is dense and increases by the agent's velocity and by the proximity towards the boundary of the circle. Costs are received when agent leaves the safety zone defined by the two yellow boundaries.

  • Gather Agents are expected to navigate and collect as many green apples as possible while avoiding red bombs (Duan et al. 2016). In contrast to the other tasks, agents in the gather tasks receive only sparse rewards when reaching apples. Costs are also sparse and received when touching bombs (Achiam et al. 2017).

  • Reach: Agents are supposed to move towards a goal (Ray et al. 2019). As soon the agents enters the goal zone, the goal is re-spawned such that the agent has to reach a series of goals. Obstacles are placed to hinder the agent from trivial solutions. We implemented obstacles with a physical body, into which agents can collide and receive costs, and ones without collision shape that produce costs for traversing. Rewards are dense and increase for moving closer to the goal and a sparse component is obtained when entering the goal zone.

  • Run: Agents are rewarded for running through an avenue between two safety boundaries (Chow et al. 2019). The boundaries are non-physical bodies which can be penetrated without collision but provide costs. Additional costs are received when exceeding an agent-specific velocity threshold.

Circle Gather Reach Run
Circle Gather Reach Run

Installation

You may simple install the latest version by running:

pip install bullet-safety-gym

Alternatively, here are the (few) steps to follow to install this repository manually.

git clone https://github.com/liuzuxin/Bullet-Safety-Gym.git

cd Bullet-Safety-Gym

pip install -e .

Supported Systems

We currently support Linux and OS X running Python 3.8 or greater. Windows should also work (but has not been tested yet).

Note: This package has been tested on Mac OS Mojave and Ubuntu (18.04 LTS, 20.04 LTS), and is probably fine for most recent Mac and Linux operating systems.

Dependencies

Bullet-Safety-Gym heavily depends on two packages:

Getting Started

After the successful installation of the repository, the Bullet-Safety-Gym environments can be simply instantiated via gym.make. See:

>>> import gymnasium as gym
>>> import bullet_safety_gym
>>> env = gym.make('SafetyCarCircle-v0')

The functional interface follows the API of the OpenAI Gym that is or greater than the 0.26.0 version. There are major changes of the reset and step functions. Check this release note for details. For the old API version, please use the old branch which requires gym==0.20.0.

>>> observation, info = env.reset()
>>> random_action = env.action_space.sample()  # usually the action is determined by a policy
>>> next_observation, reward, terminated, truncated, info = env.step(random_action)

Besides the reward signal, our environments provide an additional cost signal, which is contained in the info dictionary:

>>> info
{'cost': 1.0}

A minimal code for visualizing a uniformly random policy in a GUI, can be seen in:

import gymnasium as gym
import bullet_safety_gym

env = gym.make('SafetyAntCircle-v0')

while True:
    done = False
    env.render()  # make GUI of PyBullet appear
    o, info = env.reset()
    while not done:
        random_action = env.action_space.sample()
        o, reward, terminated, truncated, info = env.step(random_action)

Note that only calling the render function before the reset function triggers visuals.

List of environments

The environments are named in the following scheme: Safety{#agent}{#task}-v0 where the agent can be any of {Ball, Car, Drone, Ant} and the task can be of {Circle, Gather, Reach, Run,}.

There exists also a function which returns all available environments of the Bullet-Safety-Gym:

from bullet_safety_gym import get_bullet_safety_gym_env_list

env_list = get_bullet_safety_gym_env_list()

Reach Environments

  • SafetyBallReach-v0
  • SafetyCarReach-v0
  • SafetyDroneReach-v0
  • SafetyAntReach-v0

Circle Run Environments

  • SafetyBallCircle-v0
  • SafetyCarCircle-v0
  • SafetyDroneCircle-v0
  • SafetyAntCircle-v0

Run Environments

  • SafetyBallRun-v0
  • SafetyCarRun-v0
  • SafetyDroneRun-v0
  • SafetyAntRun-v0

Gather Environments

  • SafetyBallGather-v0
  • SafetyCarGather-v0
  • SafetyDroneGather-v0
  • SafetyAntGather-v0

References

  • Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Con- strained policy optimization. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 22–31, International Convention Centre, Sydney, Australia, 06– 11 Aug 2017. PMLR.

  • G. Brockman, Vicki Cheung, Ludwig Pettersson, J. Schneider, John Schulman, Jie Tang, and W. Zaremba. Openai gym. ArXiv, abs/1606.01540, 2016.

  • Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, and Edgar A. Due ́n ̃ez-Guzma ́n. Lyapunov-based safe policy optimization for continuous control. CoRR, abs/1901.10031, 2019.

  • Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement learning for continuous control. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learn- ing, volume 48 of Proceedings of Machine Learning Research, pages 1329–1338, New York, New York, USA, 20–22 Jun 2016. PMLR.

  • Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforcement Learning. 2019.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bullet_safety_gym-1.4.0.tar.gz (11.8 MB view details)

Uploaded Source

Built Distribution

bullet_safety_gym-1.4.0-py3-none-any.whl (11.9 MB view details)

Uploaded Python 3

File details

Details for the file bullet_safety_gym-1.4.0.tar.gz.

File metadata

  • Download URL: bullet_safety_gym-1.4.0.tar.gz
  • Upload date:
  • Size: 11.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for bullet_safety_gym-1.4.0.tar.gz
Algorithm Hash digest
SHA256 aa703ec2fbbd509db440fcbb87bfa58acb27279bac9a833e60ce4ab830a60b68
MD5 aaee5cc9775daedfb1751fbc3626b530
BLAKE2b-256 2d274b314cf78896b88efeb48cab246169af1e7eb714a36bcc8ef30e1f17a31c

See more details on using hashes here.

File details

Details for the file bullet_safety_gym-1.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for bullet_safety_gym-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 26a1f61445bec3c9a5b8027a39e4c652ee7f279ab27fd07ca76ab23eba75c87c
MD5 a2a24e431dde8ea1e6943bf9d0ef1b80
BLAKE2b-256 1123b14367bef8c4192d93b58dab30dead73e959cb6a979093542e6d033127fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page