Skip to main content

A state machine for data projects

Project description

🧊 Burr

Burr Discord

Burr makes it easy to develop applications that make decisions (chatbots, agents, simulations, etc...) from simple python building blocks.

Burr works well for any application that uses LLMs, and can integrate with any of your favorite frameworks. Burr includes a UI that can track/monitor/trace your system in real time.

Link to documentation. Quick (<3min) video intro here. Longer video intro & walkthrough. Blog post here.

🏃Quick start

Install from pypi:

pip install "burr[start]"

Then run the UI server:

burr

This will open up Burr's telemetry UI. It comes loaded with some default data so you can click around. It also has a demo chat application to help demonstrate what the UI captures enabling you too see things changing in real-time. Hit the "Demos" side bar on the left and select chatbot. To chat it requires the OPENAI_API_KEY environment variable to be set, but you can still see how it works if you don't have an API key set.

Next, start coding / running examples:

git clone https://github.com/dagworks-inc/burr && cd burr/examples/hello-world-counter
python application.py

You'll see the counter example running in the terminal, along with the trace being tracked in the UI. See if you can find it.

For more details see the getting started guide.

🔩 How does Burr work?

With Burr you express your application as a state machine (i.e. a graph/flowchart). You can (and should!) use it for anything in which you have to manage state, track complex decisions, add human feedback, or dictate an idempotent, self-persisting workflow.

The core API is simple -- the Burr hello-world looks like this (plug in your own LLM, or copy from the docs for gpt-X)

from burr.core import action, State, ApplicationBuilder

@action(reads=[], writes=["prompt", "chat_history"])
def human_input(state: State, prompt: str) -> State:
    # your code -- write what you want here!
    return state.update(prompt=prompt).append(chat_history=chat_item)

@action(reads=["chat_history"], writes=["response", "chat_history"])
def ai_response(state: State) -> State:
    response = _query_llm(state["chat_history"]) # Burr doesn't care how you use LLMs!
    return state.update(response=content).append(chat_history=chat_item)

app = (
    ApplicationBuilder()
    .with_actions(human_input, ai_response)
    .with_transitions(
        ("human_input", "ai_response"),
        ("ai_response", "human_input")
    ).with_state(chat_history=[])
    .with_entrypoint("human_input")
    .build()
)
*_, state = app.run(halt_after=["ai_response"], inputs={"prompt": "Who was Aaron Burr, sir?"})
print("answer:", app.state["response"])

Burr includes:

  1. A (dependency-free) low-abstraction python library that enables you to build and manage state machines with simple python functions
  2. A UI you can use view execution telemetry for introspection and debugging
  3. A set of integrations to make it easier to persist state, connect to telemetry, and integrate with other systems

Burr at work

💻️ What can you do with Burr?

Burr can be used to power a variety of applications, including:

  1. A simple gpt-like chatbot
  2. A stateful RAG-based chatbot
  3. An LLM-based adventure game
  4. An interactive assistant for writing emails

As well as a variety of (non-LLM) use-cases, including a time-series forecasting simulation, and hyperparameter tuning.

And a lot more!

Using hooks and other integrations you can (a) integrate with any of your favorite vendors (LLM observability, storage, etc...), and (b) build custom actions that delegate to your favorite libraries (like Hamilton).

Burr will not tell you how to build your models, how to query APIs, or how to manage your data. It will help you tie all these together in a way that scales with your needs and makes following the logic of your system easy. Burr comes out of the box with a host of integrations including tooling to build a UI in streamlit and watch your state machine execute.

🏗 Start building

See the documentation for getting started, and follow the example. Then read through some of the concepts and write your own application!

📃 Comparison against common frameworks

While Burr is attempting something (somewhat) unique, there are a variety of tools that occupy similar spaces:

Criteria Burr Langgraph temporal Langchain Superagent Hamilton
Explicitly models a state machine
Framework-agnostic
Asynchronous event-based orchestration
Built for core web-service logic
Open-source user-interface for monitoring/tracing
Works with non-LLM use-cases

🌯 Why the name Burr?

Burr is named after Aaron Burr, founding father, third VP of the United States, and murderer/arch-nemesis of Alexander Hamilton. What's the connection with Hamilton? This is DAGWorks' second open-source library release after the Hamilton library We imagine a world in which Burr and Hamilton lived in harmony and saw through their differences to better the union. We originally built Burr as a harness to handle state between executions of Hamilton DAGs (because DAGs don't have cycles), but realized that it has a wide array of applications and decided to release it more broadly.

🛣 Roadmap

While Burr is stable and well-tested, we have quite a few tools/features on our roadmap!

  1. Recursive state machines. Run Burr within Burr to get hierarchical agents/parallelism + track through to the UI.
  2. Testing & eval curation. Curating data with annotations and being able to export these annotations to create unit & integration tests.
  3. Various efficiency/usability improvements for the core library (see planned capabilities for more details). This includes:
    1. Fully typed state with validation
    2. First-class support for retries + exception management
    3. More integration with popular frameworks (LCEL, LLamaIndex, Hamilton, etc...)
    4. Capturing & surfacing extra metadata, e.g. annotations for particular point in time, that you can then pull out for fine-tuning, etc.
  4. Tooling for hosted execution of state machines, integrating with your infrastructure (Ray, modal, FastAPI + EC2, etc...)
  5. Storage integrations. More integrations with technologies like Redis, MongoDB, MySQL, etc. so you can run Burr on top of what you have available.
  6. More out of the box plugins for fine-grained tracing, e.g. decorators for your functions, LLM clients, etc.

If you want to avoid self-hosting the above solutions we're building Burr Cloud. To let us know you're interested sign up here for the waitlist to get access.

🤲 Contributing

We welcome contributors! To get started on developing, see the developer-facing docs.

👪 Contributors

Code contributions

Users who have contributed core functionality, integrations, or examples.

Bug hunters/special mentions

Users who have contributed small docs fixes, design suggestions, and found bugs

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

burr-0.26.0rc4.tar.gz (20.8 MB view details)

Uploaded Source

Built Distribution

burr-0.26.0rc4-py3-none-any.whl (4.9 MB view details)

Uploaded Python 3

File details

Details for the file burr-0.26.0rc4.tar.gz.

File metadata

  • Download URL: burr-0.26.0rc4.tar.gz
  • Upload date:
  • Size: 20.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for burr-0.26.0rc4.tar.gz
Algorithm Hash digest
SHA256 86d0cdfc9f36530f2faaab3e7904d7adcf59cfbdfc557fc101c5860bf223f125
MD5 bbef778632b964f576c2a246758505dd
BLAKE2b-256 7e3576a6a6976ab98c0620cb6ca66d482ae3a08eed77552065bfb2d01ae7e5c5

See more details on using hashes here.

File details

Details for the file burr-0.26.0rc4-py3-none-any.whl.

File metadata

  • Download URL: burr-0.26.0rc4-py3-none-any.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for burr-0.26.0rc4-py3-none-any.whl
Algorithm Hash digest
SHA256 6ad726478b6d90ef645b57a79739bb99197a5b54e0e6d41f43d4267cc0ee6e46
MD5 5c08003c8059def2d0399f6cc88bc36a
BLAKE2b-256 193d2419cfafb8f7021311d35b89bd41a537e6b04c9d45d2338e8bedf950dd99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page