Skip to main content

Python library to scrape financial data from Casablanca Stock Exchange(Bourse des Valeurs de Casablanca)

Project description

BVCscrap

BVCscrap is a Python library to retrieve data from LeBoursier.ma and Bourse de Casablanca, which provides data retrieval from up to 78 stocks and indices. BVCscrap allows the user to download historical and intraday data from all the shares traded on Casablanca Stock Exchange.

BVCscrap stands for "La Bourse des valeurs de Casablanca" scraper.

Requirements

In order to use BVCscrap you should download the following packages: requests, beautifulsoup4, lxml, json, and datetime.

The outputs of this library are DataFrames or dictionaries, so Pandas should be installed

Install

pip install BVCscrap
import BVCscrap as bvc

What's new :

For each stock you can get: Session data, latest transactions, best limit and data of the last 5 sessions:

https://user-images.githubusercontent.com/49843367/159122217-c2bc3225-df3a-40eb-abfd-a890fdfa2f2b.mp4

You can get all the key indicators available at "Bourse de Casablanca"

https://user-images.githubusercontent.com/49843367/159122265-efe58782-02ae-43ff-8fe8-04054c3de5e3.mp4

You can also get indexes summary for each session. Examples and more functions are available at this notebook indicateur_02

How to use

To use this libary there is a notation to respect: names of stocks. You can find jupyter notebooks on Github

Get the notation

import BVCscrap  as bvc
bvc.notation()
['Addoha',
 'AFMA',
 'Afric Indus',
 'Afriquia Gaz',
 'Agma',
 .
 .
 'Zellidja',
 'MASI','MSI20']

Data of one single stock

Syntaxe :loadata(name, start=None,end=None,decode="utf-8")

To get data from date 0 (The data is provided from Septembre 2016)

import BVCscrap  as bvc
data=bvc.loadata('BCP')
data.tail()
             Value	  Min	   Max	    Variation	       Volume
   date                                  
22/09/2021	271.00	 269.60	  271.00	0.00		52908
23/09/2021	272.60	 271.00	  273.00	0.59		37230
24/09/2021	276.00	 271.00	  278.00	1.25		162109
27/09/2021	275.00	 272.05	  276.95       -0.36		51533
28/09/2021	276.05	 272.70	  276.05	0.38		17676

You can get data between two periods :

data=bvc.loadata('CIH',start='2018-01-01',end='2019-01-01')
data
	       Value	Min	 Max   Variation  	Volume
date					
02/01/2018	278.0	278.00	279.5	-2.80	  	312
03/01/2018	278.0	278.00	279.5	0.00		312
...	...	...	...	...	...
28/12/2018	294.0	294.00	301.0	-2.00		211865
31/12/2018	300.0	300.00	300.0	2.04		12

You can get the historical data of MASI and MSI20

data=bvc.loadata('MASI',start='2022-09-01',end='2022-09-5')
data
		   Value
labels	
2022-09-01	12127.1717
2022-09-02	12136.2882
2022-09-05	12140.7196
data=bvc.loadata('MSI20',start='2022-09-01',end='2022-09-5')
data
		   Value
labels	
2022-09-01	980.633689
2022-09-02	981.350658
2022-09-05	982.005686

Sometime you may face some encoding\decoding issues, you can change the value of decode argument from its default value "utf-8" to another format (e.g "utf-8-sig" is working )

Data of many stocks

Syntaxe :loadmany(*args,start=None,end=None,feature="Value",decode="utf-8")

data=bvc.loadmany('BCP','CIH')
data.tail()
             BCP     CIH
22/09/2021	271.00	301.0
23/09/2021	272.60	305.0
24/09/2021	276.00	313.0
27/09/2021	275.00	310.0
28/09/2021	276.05	305.8

You can use start and end arguments :

data=bvc.loadmany('BCP','CIH',start='2018-01-01',end='2019-01-01')
data.tail()
	         BCP	CIH
date		
02/01/2018	293.0	278.0
03/01/2018	289.9	278.0
04/01/2018	285.3	280.8
05/01/2018	283.0	280.8
08/01/2018	285.4	280.8
...	...	...
25/12/2018	279.0	294.2
26/12/2018	277.0	296.0
27/12/2018	279.9	300.0
28/12/2018	280.0	294.0
31/12/2018	280.0	300.0

In case you want to have data of lots of stocks you can give the function a list of these stocks. Moreover feature argument let you choose another variable (Value, Min, Max, Variation, Volume")

data=bvc.loadmany(['BCP','BMCI','BOA','CIH'],start="2021-08-30",end='2021-09-04',feature="Volume")
data
		BCP	BMCI	BOA	CIH
  Date				
30/08/2021	702	33	172	53
31/08/2021	69575	2515	5853	1005
01/09/2021	28095	2515	3700	1005
02/09/2021	55744	2353	14	50
03/09/2021	26533	2353	8300	500

Intraday data

Syntaxe : getIntraday(name,decode="utf-8")

import BVCscrap  as load
data=load.getIntraday('MASI')
data
 	 Value
09:30	12899.66
09:31	12900.10
09:32	12900.60
09:34	12900.45
09:35	12901.24
...	...
15:12	12975.64
15:14	12976.79
15:17	12976.69
15:18	12978.58
15:30	13019.20

Session data

Syntaxe : getCours(name)

cours=bvc.getCours("BOA") 
cours.keys()
dict_keys(['Données_Seance', 'Meilleur_limit', 'Dernieres_Tansaction', 'Seance_prec'])
import pandas as pd
cours["Données_Seance"]
cours['Meilleur_limit']
pd.DataFrame(cours["Seance_prec"])
pd.DataFrame(cours["Dernieres_Tansaction"])

Key Indicators

Syntaxe : getKeyIndicators(name,decode='utf-8')

indicateur=bvc.getKeyIndicators('BOA')
indicateur.keys()
dict_keys(['Info_Societe', 'Actionnaires', 'Chiffres_cles', 'Ratio'])

Dividend

Syntaxe: getDividend(name,decode='utf-8')

dividends=bvc.getDividend("BOA")
pd.DataFrame(dividends)
        Annee	Montant_Dividende Type_Dividende  Date_detachement  Date_paiement
0	2020	  5,00	           Ordinaire	   15/07/2021	    29/07/2021
1	2019	  5,00	           Ordinaire	   10/08/2020	    28/09/2020
2	2018	  5,00		   Ordinaire	   03/07/2019	    15/08/2019
3	2017	  5,00		   Ordinaire	   29/06/2018	    10/07/2018

Indexes summary

Syntaxe : getIndex()

index=bvc.getIndex()
index.keys()
dict_keys(['Resume indice', 'Indice rentabilite', 'Indices en devises', 'Indice FTSE', 'Indices sectoriels'])

Weights

Syntaxe : getPond()

pond=bvc.getPond()
pd.DataFrame(pond)
	Code Isin	Instrument    Nombre de titres	Cours	Facteur flottant Facteur plafonnement	Capitalisation flottante Poids
0	MA0000012445	ATTIJARIWAFA BANK	215140839 477,95	0,30	  1,00	                    30847969200,02	 0,1834
1	MA0000011488	ITISSALAT AL-MAGHRIB	879095340 130,10	0,20	  1,00			    22874060746,80	 0,1360
2	MA0000012320	LAFARGEHOLCIM MAR	23431240 1919,00	0,30	  1,00			    13489364868,00	 0,0802

Indexes of the current session

Syntaxe: getIndexRecap()

recap=bvc.getIndexRecap()
recap.keys()
dict_keys(['Indice', 'Volume Global', 'Plus forte hausse', 'Plus forte baisse'])

Getting Help

If you are working in Jupyter notebook/lab, you can see the docstring of our functions by using Shift+Tab. An example is shown below

"""
	Load Data 
	Inputs: 
			Input   | Type                             | Description
			=================================================================================
			 name   |string                            | You must respect the notation. To see the notation see BVCscrap.notation
	                 start  |string "YYYY-MM-DD"               | starting date Must respect the notation
	                 end    |string "YYYY-MM-DD"               | Must respect the notation
	Outputs:
	                 Output | Type                             | Description
	                ================================================================================= 
	     	                | pandas.DataFrame (4 columns)     | close high low open vol
"""

Question? Contact me on Twitter @AmineAndam or on Linkedin ANDAM AMINE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

BVCscrap-0.2.1.tar.gz (12.7 kB view details)

Uploaded Source

Built Distribution

BVCscrap-0.2.1-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file BVCscrap-0.2.1.tar.gz.

File metadata

  • Download URL: BVCscrap-0.2.1.tar.gz
  • Upload date:
  • Size: 12.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for BVCscrap-0.2.1.tar.gz
Algorithm Hash digest
SHA256 421122e65775bbc364745f7cb856ecf251839623a98b0f2b436645b7e637f412
MD5 ac4766e59c8808e97a0b3f96f49516e3
BLAKE2b-256 da9c5e3ddc0e55125533e797c4427dce58662307c6567d46fcd956f5bcf09fca

See more details on using hashes here.

File details

Details for the file BVCscrap-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: BVCscrap-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for BVCscrap-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5f31491de5c16a0d61c484b8e25b69100f535d96119004f8d1da1b63be755a72
MD5 90db19b7e6bb07962b957655d80abbdd
BLAKE2b-256 fbaf2fe715ccece6db253da3613ddcf473c2ed924d7f03645ab730e4786f1709

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page