lark(feishu) client
Project description
Feishu-Webhook-Proxy
- 将飞书webhook代理成websocket
- 企业自建应用不用创建公网的回调地址,直接本地使用websocket客户端连上这个转发地址
设计
- 使用nchan维护websocket的连接
- 将飞书的回调消息,抽取飞书相关的头信息,外面包一层json,使用X-Request-Id作为唯一ID,推送给对应的channel,如果连接对应websocket的客户端回复了X-Request-Id对应的消息,就回复给飞书(这里主要用于第一次配置回调)
- 客户端自己保存飞书的密钥信息,从转发服务走的消息都是加密的。
- 客户端调用飞书其他接口,直接走自己的网络
安全性
- 飞书回调消息都是加密的,只能由websocket客户端自己解密,转发服务是透明的。
- 如何确保自己的channel不会被别人恶意使用?
使用nginx basic auth,nchan支持auth_request,在对应的request里面使用basic auth就能做校验
实现
- 部署一个nchan(openresty版本)
- 配置一个internal的location,给内部转发飞书消息使用
- 配置一个location,作为飞书webhook转发(处理消息转发逻辑,如果是配置连接,就重定向到request_id对应的channel等待客户端返回challenge给飞书)
organization
使用一个organization对当前组织下面的所有bot进行管理 这样所有的消息可以通过
org_<name>
一个channel推送,这种模式下启动服务的时候可以不用提前注册所有的bot,可以动态的加入新的bot进去
- 对org_的channel增加basic auth
- hook链接转发消息兼容organization
- 新增一个支持organization的client
client = Client(bot1, bot2, org_name='org_lloyd', org_passwd='passwd')
使用
python sdk
pip install wslarkbot
from wslarkbot import *
class MyBot(Bot):
def on_message(self, data, raw_message, **kwargs):
# 定义每一个机器人拿到消息后的处理逻辑
print('on_message', self.app_id, data, raw_message)
if 'header' in data:
if data['header']['event_type'] == 'im.message.receive_v1' and data['event']['message']['message_type'] == 'text':
message_id = data['event']['message']['message_id']
content = json.loads(data['event']['message']['content'])
text = content['text']
# 测试回复消息,初始化bot的时候,需要配置app_secret才能发出去消息
self.reply_text(message_id, 'reply: ' + text)
# 回复卡片消息
self.reply_card(message_id, FeishuMessageCard(
FeishuMessageDiv('reply'),
FeishuMessageHr(),
FeishuMessageDiv(text),
FeishuMessageNote(FeishuMessagePlainText('🤖'))
))
bot1 = MyBot('cli_xxx', app_secret='xxx', encrypt_key='xxx')
bot2 = MyBot('cli_xxx', app_secret='xxx', encrypt_key='xxx')
# 一个websocket连接,支持同时监听多个机器人回调消息
client = Client(bot1, bot2)
client.start()
集成openai
test_openai.py文件中
- 继承Bot增加自己处理消息的回调
class TextMessageBot(Bot):
def on_message(self, data, *args, **kwargs):
if 'header' in data:
if data['header']['event_type'] == 'im.message.receive_v1' and data['event']['message']['message_type'] == 'text':
content = json.loads(data['event']['message']['content'])
if self.app:
return self.app.process_text_message(text=content['text'], **data['event']['message'])
- 写一个应用:处理文本消息
class Application(object):
def process_text_message(self, text, message_id, **kwargs):
if text == '/help' or text == '帮助':
self.bot.reply_card(
message_id,
FeishuMessageCard(
FeishuMessageDiv('👋 你好呀,我是一款基于OpenAI技术的智能聊天机器人'),
FeishuMessageHr(),
FeishuMessageDiv('🎒 **需要更多帮助**\n文本回复 *帮助* 或 */help*', tag='lark_md'),
header=FeishuMessageCardHeader('🎒需要帮助吗?'),
)
)
elif text:
chat = ChatOpenAI(
callbacks=[OpenAICallbackHandler(self.bot, message_id)],
**self.openai_options
)
system_message = [SystemMessage(content=self.system_role)] if self.system_role else []
chat_history = [] # TODO
messages = system_message + chat_history + [HumanMessage(content=text)]
message = chat(messages)
logging.debug("reply message %r", message)
else:
logging.warn("empty text", text)
- 初始化应用,启动机器人
if __name__ == "__main__":
app = Application(
openai_api_base='',
openai_api_key='',
app_id='',
app_secret='',
encrypt_key='',
verification_token='',
)
client = Client(app.bot)
client.start(True) # debug mode
运行示例
pip install wslarkbot langchain openai click
python test_openai.py
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.