Skip to main content

a simple decorator to cache the results of computationally heavy functions

Project description

Travis CI build SonarCloud Quality SonarCloud Maintainability Codacy Maintainability Maintainability Pypi project Pypi total project downloads

A simple decorator to cache the results of computationally heavy functions. The package automatically serialize and deserialize depending on the format of the save path.

Currently it supports:

  • .json

  • .json.gz

  • .json.bz

  • .json.lzma

  • .pkl

  • .pkl.gz

  • .pkl.bz

  • .pkl.lzma

  • .pkl.zip

  • .npy

  • .npz

  • .csv

  • .csv.gz

  • .csv.bz2

  • .csv.zip

  • .csv.xz

  • .xlsx

How do I install this package?

As usual, just download it using pip:

pip install cache_decorator

Tests Coverage

Since some software handling coverages sometime get slightly different results, here’s three of them:

Coveralls Coverage SonarCloud Coverage Code Climate Coverate

Examples of Usage

To cache a function or a method you just have to decorate it with the cache decorator.

from time import sleep
from cache_decorator import Cache

@Cache()
def x(a, b):
    sleep(3)
    return a + b

class A:
    @Cache()
    def x(self, a, b):
        sleep(3)
        return a + b

By default the cache is differentiate by the parameters passed to the function. One can specify which parameters should be ignored.

from time import sleep
from cache_decorator import Cache

@Cache(args_to_ignore=["verbose"])
def x(a, verbose=False):
    sleep(3)
    if verbose:
        print("HEY")
    return a

Multiple arguments can be specified as a list of strings with the name of the arguments to ignore.

from time import sleep
from cache_decorator import Cache

@Cache(args_to_ignore=["verbose", "multiprocessing"])
def x(a, verbose=False, multiprocessing=False):
    sleep(3)
    if verbose:
        print("HEY")
    return a

The default cache directory is ./cache but this can be setted by passing the cache_dir parameter to the decorator or by setting the environment variable CACHE_DIR. In the case both are setted, the parameter folder has precedence over the environment one.

from time import sleep
from cache_decorator import Cache

@Cache(cache_dir="/tmp")
def x(a):
    sleep(3)
    return a

The path format can be modified by passing the cache_path parameter. This string will be formatted with infos about the function, its parameters and, if it’s a method, the self attributes.

De default path is:

from time import sleep
from cache_decorator import Cache

@Cache(cache_path="{cache_dir}/{file_name}_{function_name}/{_hash}.pkl")
def x(a):
    sleep(3)
    return a

But can be modified giving cache a more significative name, for example we can add the value of a into the file name.

from time import sleep
from cache_decorator import Cache

@Cache(cache_path="{cache_dir}/{file_name}_{function_name}/{a}_{_hash}.pkl")
def x(a):
    sleep(3)
    return a

Depending on the extension of the file, different serialization and deserialization dispatcher will be called.

from time import sleep
from cache_decorator import Cache

@Cache(cache_path="/tmp/{_hash}.pkl.gz")
def x(a):
    sleep(3)
    return a

@Cache(cache_path="/tmp/{_hash}.json")
def x(a):
    sleep(3)
    return {"1":1,"2":2}

@Cache(cache_path="/tmp/{_hash}.npy")
def x(a):
    sleep(3)
    return np.array([1, 2, 3])

@Cache(cache_path="/tmp/{_hash}.npz")
def x(a):
    sleep(3)
    return np.array([1, 2, 3]), np.array([1, 2, 4])

Cache also might have a validity duration.

from time import sleep
from cache_decorator import Cache

@Cache(
    cache_path="/tmp/{_hash}.pkl.gz",
    validity_duration="24d"
    )
def x(a):
    sleep(3)
    return a

In this example the cache will be valid for the next 24 days. and on the 25th day the cache will be rebuilt. The duration can be written as a time in seconds or as a string with unit. The units can be “s” seconds, “m” minutes, “h” hours, “d” days, “w” weeks.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cache_decorator-1.3.2.tar.gz (10.7 kB view details)

Uploaded Source

File details

Details for the file cache_decorator-1.3.2.tar.gz.

File metadata

  • Download URL: cache_decorator-1.3.2.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3

File hashes

Hashes for cache_decorator-1.3.2.tar.gz
Algorithm Hash digest
SHA256 52b45903f19b07177b702a4d95f0293967324ee1299608abd5b2b5509303b7a2
MD5 5665a9fb6fc24de42e920ec3115a1d98
BLAKE2b-256 e5cf62d1bf58908911482482f4bc16f7d0d0a964d745445c34c26da41eecb805

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page