Skip to main content

Python utility for fetching any historical data using caching.

Project description

Cached Historical Data Fetcher

CI Status Documentation Status Test coverage percentage

Poetry black pre-commit

PyPI Version Supported Python versions License

Python utility for fetching any historical data using caching. Suitable for acquiring data that is added frequently and incrementally, e.g. news, posts, weather, etc.

Installation

Install this via pip (or your favourite package manager):

pip install cached-historical-data-fetcher

Features

  • Uses cache built on top of joblib, lz4 and aiofiles.
  • Ready to use with asyncio, aiohttp, aiohttp-client-cache. Uses asyncio.gather for fetching chunks in parallel. (For performance reasons, only using aiohttp-client-cache is probably not a good idea when fetching large number of chunks (web requests).)
  • Based on pandas and supports MultiIndex.

Usage

HistoricalDataCache, HistoricalDataCacheWithChunk and HistoricalDataCacheWithFixedChunk

Override get_one() method to fetch data for one chunk. update() method will call get_one() for each unfetched chunk and concatenate results, then save to cache.

from cached_historical_data_fetcher import HistoricalDataCacheWithFixedChunk
from pandas import DataFrame, Timedelta, Timestamp
from typing import Any

# define cache class
class MyCacheWithFixedChunk(HistoricalDataCacheWithFixedChunk[Timestamp, Timedelta, Any]):
    delay_seconds = 0.0 # delay between chunks (requests) in seconds
    interval = Timedelta(days=1) # interval between chunks, can be any type
    start_index = Timestamp.utcnow().floor("10D") # start index, can be any type

    async def get_one(self, start: Timestamp, *args: Any, **kwargs: Any) -> DataFrame:
        """Fetch data for one chunk."""
        return DataFrame({"day": [start.day]}, index=[start])

# get complete data
print(await MyCacheWithFixedChunk().update())
                           day
2023-09-30 00:00:00+00:00   30
2023-10-01 00:00:00+00:00    1
2023-10-02 00:00:00+00:00    2

See example.ipynb for real-world example.

IdCacheWithFixedChunk

Override get_one method to fetch data for one chunk in the same way as in HistoricalDataCacheWithFixedChunk. After updating ids by calling set_ids(), update() method will call get_one() for every unfetched id and concatenate results, then save to cache.

from cached_historical_data_fetcher import IdCacheWithFixedChunk
from pandas import DataFrame
from typing import Any

class MyIdCache(IdCacheWithFixedChunk[str, Any]):
    delay_seconds = 0.0 # delay between chunks (requests) in seconds

    async def get_one(self, start: str, *args: Any, **kwargs: Any) -> DataFrame:
        """Fetch data for one chunk."""
        return DataFrame({"id+hello": [start + "+hello"]}, index=[start])

cache = MyIdCache() # create cache
cache.set_ids(["a"]) # set ids
cache.set_ids(["b"]) # set ids again, now `cache.ids` is ["a", "b"]
print(await cache.update(reload=True)) # discard previous cache and fetch again
cache.set_ids(["b", "c"]) # set ids again, now `cache.ids` is ["a", "b", "c"]
print(await cache.update()) # fetch only new data
       id+hello
    a   a+hello
    b   b+hello
       id+hello
    a   a+hello
    b   b+hello
    c   c+hello

Contributors ✨

Thanks goes to these wonderful people (emoji key):

This project follows the all-contributors specification. Contributions of any kind welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cached_historical_data_fetcher-0.2.24.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file cached_historical_data_fetcher-0.2.24.tar.gz.

File metadata

File hashes

Hashes for cached_historical_data_fetcher-0.2.24.tar.gz
Algorithm Hash digest
SHA256 629f9552cc629d5f00b67c85ecef1fe9139b829b79dbfa3020a32bbc04101e44
MD5 31f12be217e21d0285d50369d2c79071
BLAKE2b-256 2ea643ed7601d9b586ff927d295a61de85cc51b46ba7251f271acfb29dacd09f

See more details on using hashes here.

File details

Details for the file cached_historical_data_fetcher-0.2.24-py3-none-any.whl.

File metadata

File hashes

Hashes for cached_historical_data_fetcher-0.2.24-py3-none-any.whl
Algorithm Hash digest
SHA256 60712533621f5957ca9e6b31c1693aa8eaf31320a98fe91fdb89ab0a66e33e1d
MD5 c16231585388360139ce62500be3d1e9
BLAKE2b-256 dd092b16aa68fe463d06792b437d17db444fb05d4d16cc78794570de5692b9de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page