Skip to main content

Python utils and decorators for cаching with TTL, maxsize and file-based storage.

Project description

Status

WORK IN PROGRESS

Caching

Build Status Coverage Status Python Versions

Python utils and decorators for cаching with TTL, maxsize and file-based storage.

Installation

pip install caching

Usage

from caching import Cache

# File-based cache with unlimited ttl and maximum of 128 cached results
@Cache(ttl=-1, maxsize=128, filepath='/tmp/mycache')
def long_running_function(a, b, *args, c=None, **kwargs):
    pass

# Memory-based cache with limited ttl and maxsize and "least recently used"
# cache replacement policy.
@Cache(ttl=60, maxsize=128, policy='LRU')
def long_running_function(a, b, *args, c=None, **kwargs):
    pass

Advanced usage

from caching import Cache

# One cache for many functions

cache = Cache(filepath='/tmp/mycache', ttl=3600, maxsize=1024)

@cache
def pow(x, y):
    return x**y

@cache
def factorial(n):
    if n == 0:
        return 1
    return n * factorial(n-1)


# Caching the last result and returning it only in case of errors

@Cache(maxsize=1, only_on_errors=(ConnectionError, TimeoutError))
def api_request():
    """Request some remote resource which sometimes become unavailable.
    If this functions raises ConnectionError or TimeoutError, then the
    last cached result will be returned, if available."""


# Custom cache key function

@Cache(key=lambda x: x[0])
def toupper(a):
    global call_count
    call_count += 1
    return str(a).upper()

call_count = 0

# The key function returns the same result for both 'aaa' and 'azz'
# so the cached result from the first call is returned in the second call
assert toupper('aaa') == toupper('azz') == 'AAA'
assert call_count == 1


# Using cache as a key-value store

cache = Cache()

try:
    result = cache[1]
except KeyError:
    result = calculate_result(1)
    cache[1] = result
    assert 1 in cache
    assert cache[1] == result
    assert cache.get(1, None) == result
    assert cache.get(2, None) is None

# Cleanup

import os

cache = Cache(filepath='/tmp/mycache')
cache[1] = 'one'
assert 1 in cache
cache.clear()  # empty the cache
assert 1 not in cache
assert list(cache.items()) == []
assert os.path.isfile('/tmp/mycache')
cache.remove()  # Empty the cache and remove the underlying file
assert not os.path.isfile('/tmp/mycache')

Features

  • [x] Memory and file based cache.
  • [x] TTL and maxsize.
  • [x] Works with *args, **kwargs.
  • [x] Works with mutable function arguments of the following types: dict, list, set.
  • [x] FIFO, LRU and LFU cache replacement policies.
  • [x] Customizable cache key function.
  • [ ] Multiprocessing- and thread-safe.
  • [ ] Pluggable external caching backends (see Redis example).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for caching, version 0.1.dev8
Filename, size & hash File type Python version Upload date
caching-0.1.dev8-py2.py3-none-any.whl (8.9 kB) View hashes Wheel py2.py3
caching-0.1.dev8.tar.gz (7.0 kB) View hashes Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page