Skip to main content

Converts CAD files to a DAGMC h5m file using Cubit

Project description

N|Python

CircleCI CI with docker build

PyPI

docker-publish-release

This is a minimal Python package that provides both command line and API interfaces for converting multiple CAD files (STP and SAT format) into a DAGMC h5m file using the Cubit Python API.

This is useful for creating the DAGMC geometry for use in compatible neutronics codes such as OpenMC, FLUKA and MCNP.

The geometry is tagged wih material names, optional imprinted and merging during the process which can speed up particle transport.

Python API usage

Creating a h5m file from a single STP file called part1.stp and applying a material tag to the volume.

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.stp', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)

Creating a h5m file from two STP files called part1.stp and part2.stp. Both parts have distinct material tag applied to them and the result is output as a h5m file with the filename dagmc.h5m.

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {'cad_filename':'part1.stp', 'material_tag':'m1'},
        {'cad_filename':'part2.stp', 'material_tag':'m2'}
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)

Creating a h5m file from a single SAT is a similar process. Note the .sat file extension.

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[{'cad_filename':'part1.sat', 'material_tag':'m1'}],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
)

Creating a tet mesh files compatible with the OpenMC / DAGMC Unstructured mesh format is also possible. Another key called tet_mesh to the files_with_tags dictionary will tirgger the meshing of that CAD file. The value of the key will be passed to the Cubit mesh command as an instruction. The following command will produce a unstructured_mesh_file.exo file that can then be used in DAGMC compatable neutronics codes. There are examples 1 2 for the use of unstructured meshes in OpenMC.

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/'
    exo_filename='unstructured_mesh_file.exo'
)

Use if exo files requires OpenMC to be compiled with LibMesh. OpenMC also accepts DAGMC tet meshes made with MOAB which is another option. The following example creates a cub file that contains a mesh. The MOAB tool mbconvert is then used to extract the tet mesh and save it as a h5m file which cna be used in OpenMC as shown in the OpenMC examples

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'tet_mesh': 'size 0.5'
        }
    ],
    h5m_filename='dagmc.h5m',
    cubit_path='/opt/Coreform-Cubit-2021.5/bin/',
    cubit_filename='unstructured_mesh_file.cub'
)

mbconvert is a terminal command that is part of MOAB.

mbconvert unstructured_mesh_file.cub unstructured_mesh_file.h5m

Scaling geometry is also possible. This is useful as particle transport codes often make use of cm as the default unit. CAD files typically appear in mm as the default limit. Some CAD packages ignore units while others make use of them. The h5m files are assumed to be in cm by particle transport codes so often it is nessecary to scale up or down the geometry. This can be done by adding another key called scale and a value to the files_with_tags dictionary. This example multiplies the geometry by 10.

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
            'scale': 10
        }
    ],
    h5m_filename='dagmc.h5m',
)

Assigning a material to the implicit complement is also possible. This can be useful on large complex geometries where boolean operations can result in robustness issues. This is implemented by assigning the desired material tag of the implicit complement to the optional implicit_complement_material_tag argument. Defaults to vacuum.

from cad_to_h5m import cad_to_h5m

cad_to_h5m(
    files_with_tags=[
        {
            'cad_filename':'part1.sat',
            'material_tag':'m1',
        }
    ],
    h5m_filename='dagmc.h5m',
    implicit_complement_material_tag = 'm2'
)

Installation

The package is available via the PyPi package manager and the recommended method of installing is via pip.

pip install cad_to_h5m

Some Python dependencies (such as Numpy) are installed during the pip install cad_to_h5m process, however Cubit needs to be installed seperatly to make full use of this package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cad_to_h5m-0.2.0.tar.gz (9.8 kB view hashes)

Uploaded Source

Built Distribution

cad_to_h5m-0.2.0-py3-none-any.whl (8.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page