The python package to the Cancer Driver Drug Interaction Explorer (CADDIE)
Project description
caddiepy
The python package to the Cancer Driver Drug Interaction Explorer (CADDIE). It provides an interface for a variety of CADDIEs functionalities, giving the user the possibility to execute tasks on CADDIE programmatically without using the website. This allows to run a larger number of drug-target search or drug repurposing tasks and to implement CADDIE into your programs. For more information about CADDIE, visit the documentation.
Working example
import caddiepy
gene_list = ['PTEN', 'MYC']
# verify that genes exist in CADDIE
caddie_gene_list = caddiepy.api.map_gene_id(gene_list).json()['genes']
task = caddiepy.Task('drug', 'network_proximity', [gene['graphId'] for gene in caddie_gene_list])
# customize parameters
task.set_parameter('result_size', 5)
task.set_parameter('include_indirect_drugs', True)
task.set_parameter('gene_interaction_datasets', ['IID'])
task.set_parameter('drug_interaction_datasets', ['DrugBank'])
# start task
task.run()
# get result when task is finished, if task is still running wait until it is finished
result = task.get_result()
Pipeline example (drug target search folled by drug search)
Note: The following pipeline can also be called as:
gene_list = ['FBXW7', 'PTEN', 'MYC']
resulting_drugs = caddiepy.pipeline(gene_list)['drugObjects']
gene_list = ['FBXW7', 'PTEN', 'MYC']
# verify that genes exist in CADDIE
caddie_gene_list = caddiepy.api.map_gene_id(gene_list).json()['genes']
task = caddiepy.Task('drug-target', 'multi-steiner', [gene['graphId'] for gene in caddie_gene_list])
# customize parameters
task.set_parameter('result_size', 20)
task.set_parameter('gene_interaction_datasets', ['BioGRID'])
# start task
task.run()
# get result when task is finished, if task is still running wait until it is finished
result_drug_targets = task.get_result()
task = caddiepy.Task('drug', 'trustrank', result_drug_targets['network']['nodes'])
# customize parameters
task.set_parameter('result_size', 20)
task.set_parameter('include_indirect_drugs', True)
task.set_parameter('gene_interaction_datasets', ['IID'])
task.set_parameter('drug_interaction_datasets', ['DrugBank'])
# start task
task.run()
# get result when task is finished, if task is still running wait until it is finished
resulting_drugs = task.get_result()['drugObjects']
How to use
Import
Import the module:
import caddiepy
2 Steps to repurpose drugs and find drug-targets
Step 1: Map genes to CADDIE gene IDs. This step is necessary to verify the genes exist in the CADDIE database. The gene objects returned contains a mapping to different IDs.
# gene list is a list of gene identifiers: entrez, uniprot ac or hugo
caddiepy.api.map_gene_id(gene_list)
# example to receive list of caddie IDs
caddie_gene_list = caddiepy.api.map_gene_id(gene_list).json()['genes']
caddie_gene_id_list = [gene['graphId'] for gene in caddie_gene_list]
Step 2: Use CADDIE IDs to find putative drug-targets or candidate drugs using one of CADDIEs algorithms
Drug-target algorithms:
- multisteiner
- keypathwayminer
- trustrank
- harmonic_centraliy
- degree_centraliy
- betweenness_centraliy
Drug algorithms:
- trustrank
- harmonic_centraliy
- degree_centraliy
- network_proximity
# target is either 'drug' or 'drug-target'
# caddie_gene_id_list is a list of caddie gene IDs (like g123, g234, ...)
task = caddiepy.Task(target, algorithm, caddie_gene_id_list)
# set parameters like this (for a full list of parameters and the available datasets look below)
task.set_parameter('result_size', 50)
task.set_parameter('gene_interaction_datasets', [gene_interaction_dataset1, gene_interaction_dataset2, ...])
task.set_parameter('drug_interaction_datasets', [drug_interaction_dataset1, drug_interaction_dataset2, ...])
# start task
task.run()
# get result when task is finished, if task is still running wait until it is finished
result = task.get_result()
Algorithm parameters
The full list of parameters for each algorithm (for an explanation, visit the documentation). For all available input options (dataset names, cancer-types) see below.
# multisteiner
task.set_parameter('num_trees', 5)
task.set_parameter('tolerance', 10)
task.set_parameter('hub_penalty', 0)
task.set_parameter('max_deg', sys.maxsize)
task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list)
task.set_parameter('mutation_cancer_type', mutation_cancer_type)
task.set_parameter('expression_cancer_type', expression_cancer_type)
task.set_parameter('tissue', tissue)
# keypathwayminer
task.set_parameter('k', 5)
# trustrank
task.set_parameter('damping_factor', 0.85)
task.set_parameter('hub_penalty', 0)
task.set_parameter('max_deg', sys.maxsize)
task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list)
task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list)
task.set_parameter('mutation_cancer_type', mutation_cancer_type)
task.set_parameter('expression_cancer_type', expression_cancer_type)
task.set_parameter('tissue', tissue)
task.set_parameter('include_nutraceutical_drugs', boolean)
task.set_parameter('only_atc_l_drugs', boolean)
task.set_parameter('include_indirect_drugs', boolean)
task.set_parameter('include_non_approved_drugs', boolean)
task.set_parameter('filter_paths', boolean)
task.set_parameter('available_drugs', available_drug_list)
# only avaibale if drug_interaction_dataset_list = ['drugbank']
task.set_parameter('drug_target_action', drug_effect)
# degree_centrality
task.set_parameter('hub_penalty', 0)
task.set_parameter('max_deg', sys.maxsize)
task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list)
task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list)
task.set_parameter('mutation_cancer_type', mutation_cancer_type)
task.set_parameter('expression_cancer_type', expression_cancer_type)
task.set_parameter('tissue', tissue)
task.set_parameter('include_nutraceutical_drugs', boolean)
task.set_parameter('only_atc_l_drugs', boolean)
task.set_parameter('include_indirect_drugs', boolean)
task.set_parameter('include_non_approved_drugs', boolean)
task.set_parameter('filter_paths', boolean)
task.set_parameter('available_drugs', available_drug_list)
# only avaibale if drug_interaction_dataset_list = ['drugbank']
task.set_parameter('drug_target_action', drug_effect)
# harmonic_centrality
task.set_parameter('hub_penalty', 0)
task.set_parameter('max_deg', sys.maxsize)
task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list)
task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list)
task.set_parameter('mutation_cancer_type', mutation_cancer_type)
task.set_parameter('expression_cancer_type', expression_cancer_type)
task.set_parameter('tissue', tissue)
task.set_parameter('include_nutraceutical_drugs', boolean)
task.set_parameter('only_atc_l_drugs', boolean)
task.set_parameter('include_indirect_drugs', boolean)
task.set_parameter('include_non_approved_drugs', boolean)
task.set_parameter('filter_paths', boolean)
task.set_parameter('available_drugs', available_drug_list)
# only avaibale if drug_interaction_dataset_list = ['drugbank']
task.set_parameter('drug_target_action', drug_effect)
# betweenness_centrality
task.set_parameter('hub_penalty', 0)
task.set_parameter('max_deg', sys.maxsize)
task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list)
task.set_parameter('mutation_cancer_type', mutation_cancer_type)
task.set_parameter('expression_cancer_type', expression_cancer_type)
task.set_parameter('tissue', tissue)
task.set_parameter('filter_paths', boolean)
# network_proximity
task.set_parameter('hub_penalty', 0)
task.set_parameter('max_deg', sys.maxsize)
task.set_parameter('gene_interaction_datasets', gene_interaction_dataset_list)
task.set_parameter('drug_interaction_datasets', drug_interaction_dataset_list)
task.set_parameter('mutation_cancer_type', mutation_cancer_type)
task.set_parameter('expression_cancer_type', expression_cancer_type)
task.set_parameter('tissue', tissue)
task.set_parameter('include_nutraceutical_drugs', boolean)
task.set_parameter('only_atc_l_drugs', boolean)
task.set_parameter('include_indirect_drugs', boolean)
task.set_parameter('include_non_approved_drugs', boolean)
task.set_parameter('filter_paths', boolean)
task.set_parameter('available_drugs', available_drug_list)
# only avaibale if drug_interaction_dataset_list = ['drugbank']
task.set_parameter('drug_target_action', drug_effect)
List all available datasets
List all available gene interaction datasets:
caddiepy.api.get_gene_interaction_datasets().json()
List all available drug interaction datasets:
caddiepy.api.get_drug_interaction_datasets().json()
List all available tissues:
caddiepy.api.get_tissues().json()
List all available expression cancer types:
caddiepy.api.get_expression_cancer_types().json()
List all available mutation cancer types:
caddiepy.api.get_mutation_cancer_types().json()
List all available drug effects (only relevant when working with DrugBank):
caddiepy.api.get_drug_effects().json()
Look up drugs in the CADDIE database and their interactions with genes:
caddiepy.api.drug_lookup(search_string, database_name)
Logging
Configure the logging level like this:
import logging
logging.basicConfig(level=logging.DEBUG)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file caddiepy-0.3.0.tar.gz
.
File metadata
- Download URL: caddiepy-0.3.0.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.13.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c05aa3b2faa4d3e56b84a19dd1e4e2360a58f02d39367259ebbf7c564c59f88 |
|
MD5 | 3acca82293599c69c354f94430b01638 |
|
BLAKE2b-256 | 863f6a62daad509b2cd1cf2b4aa43cf0e31f9c1942f599a8cad3ba0f39eb1374 |