Skip to main content

CamTrapML is a Python library for Detecting, Classifying, and Analysing Wildlife Camera Trap Imagery.

Project description

CamTrapML

CamTrapML is a Python library for Detecting, Classifying, and Analysing Wildlife Camera Trap Imagery.

Installation

$ pip install camtrapml

Features

Loading Data

Search for images in a directory, load an image and create a thumbnail.

%load_ext autoreload
%autoreload

from camtrapml.dataset import ImageDataset
from camtrapml.image.utils import load_image, thumbnail

imageset = ImageDataset(
    name="Test Images",
    path="test/fixtures/images",
)

image_paths = list(imageset.enumerate_images())

thumbnail(load_image(image_paths[0]))

EXIF Extraction

EXIF extraction is a common task in gathering the metadata such as each image's timestamp, camera model, focal length, etc. Some researchers write labelling into the EXIF data. CamTrapML doesn't assist with writing to EXIF. However, there is functionality for extracting it for analysis and building datasets for training new models from previously labelled images.

ExifTool is required for this package to work. Installation instructions can be found here.

Three methods are available for extracting EXIF data from images. Each with different performance characteristics.

Method 1: Individual Images

from camtrapml.image.exif import extract_exif

exif = extract_exif(image_paths[0])
exif

Method 2: Multiple Images

extract_multiple_exif passes a list of image paths to ExifTool and returns a list of dictionaries containing the EXIF data. This is faster than extract_exif when multiple images are being processed as it only passes the list of image paths to ExifTool once, rather than spawning a new process for each image.

from camtrapml.image.exif import extract_multiple_exif

exif = extract_multiple_exif(image_paths)
exif[0]

Method 3: Multiple Images, Multiple Processes

When processing large datasets, it's apparent that the bottleneck in extracting the EXIF information tends to be the CPU. This method spawns multiple versions of ExifTool in parallel, each with a batch of image paths. This is faster than extract_multiple_exif when processing large datasets as it allows for multiple processes to be spawned and the data extracted in parallel.

from camtrapml.image.exif import extract_multiple_exif_fast

exif = extract_multiple_exif_fast(image_paths)
exif[0]

Detection

Various Detection models are available in the camtrapml.detection subpackage. These currently include MegaDetector (v4.1, v3 and v2) and support for loading in custom Tensorflow v1.x Object Detection Frozen models.

Detection with MegaDetector v4.1

from camtrapml.detection.models.megadetector import MegaDetectorV4_1
from camtrapml.detection.utils import render_detections

with MegaDetectorV4_1() as detector:
    detections = detector.detect(image_paths[0])

thumbnail(
    render_detections(image_paths[0], detections, class_map=detector.class_map)
)

Detection with a custom Tensorflow v1.x Object Detection Frozen model

!cp ~/.camtrapml/models/megadetector/v4.1.0/md_v4.1.0.pb example-custom-model.pb

from camtrapml.detection.models.tensorflow import TF1ODAPIFrozenModel
from camtrapml.detection.utils import render_detections
from pathlib import Path

with TF1ODAPIFrozenModel(
    model_path=Path("example-custom-model.pb").expanduser(),
    class_map={
        1: "animal",
    },
) as detector:
    detections = detector.detect(image_paths[1])

thumbnail(
    render_detections(image_paths[1], detections, class_map=detector.class_map)
)

Extract Detections

from camtrapml.detection.models.megadetector import MegaDetectorV4_1
from camtrapml.detection.utils import extract_detections_from_image

with MegaDetectorV4_1() as detector:
    detections = detector.detect(image_paths[0])

list(extract_detections_from_image(load_image(image_paths[0]), detections))[0]

Remove Humans from Images

In order to reduce the risks of identification of humans in line with GDPR, CamTrapML provides the ability to remove humans from images. This is achieved by using the MegaDetector v3+ models to detect humans in the image, and then replacing all pixels in each human detection.

from camtrapml.detection.models.megadetector import MegaDetectorV4_1
from camtrapml.detection.utils import remove_detections_from_image
from camtrapml.image.utils import load_image, thumbnail
from pathlib import Path

ct_image_with_humans = Path("test/fixtures/human_images/IMG_0254.JPG").expanduser()

with MegaDetectorV4_1() as detector:
    detections = detector.detect(ct_image_with_humans)

human_class_id = 2

thumbnail(
    remove_detections_from_image(
        load_image(ct_image_with_humans),
        [
            detection
            for detection in detections
            if detection["category"] == human_class_id and detection["conf"] > 0.5
        ],
    )
)


          

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

camtrapml-0.2.5.tar.gz (11.5 kB view details)

Uploaded Source

Built Distribution

camtrapml-0.2.5-py3-none-any.whl (12.3 kB view details)

Uploaded Python 3

File details

Details for the file camtrapml-0.2.5.tar.gz.

File metadata

  • Download URL: camtrapml-0.2.5.tar.gz
  • Upload date:
  • Size: 11.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.7 Darwin/21.4.0

File hashes

Hashes for camtrapml-0.2.5.tar.gz
Algorithm Hash digest
SHA256 d75f51f26f07160c57ca9fb382fd8802660bd212f442d1440f8a9c1826f6fbcc
MD5 10b8ae2c2b383882bc5630fa45c85d2f
BLAKE2b-256 1d8ec08b6398e2c3b93d646847276a6d4a0a0aa232334e2914e3620c426e3a18

See more details on using hashes here.

File details

Details for the file camtrapml-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: camtrapml-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 12.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.13 CPython/3.9.7 Darwin/21.4.0

File hashes

Hashes for camtrapml-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2685e655be2783cbffc55aa093ae276c59ce462664d6ee16fe5e8c449acf8f62
MD5 f99186e29e33ab3de2359a0695cb4056
BLAKE2b-256 04a08eae130750bba6c8d660d630ff553787ef15920750f375e88d9b76b0f83a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page