Skip to main content

CanaryPy - A light and powerful canary release for Data Pipelines

Project description

canarypy

CanaryPy - A light and powerful canary release for Data Pipelines

Test Package version Supported Python versions

Introduction

CanaryPy is a lightweight yet potent solution developed for orchestrating canary releases in your data pipelines. Its primary aim is to facilitate incremental deployment of changes in your software, thereby minimizing the impact of any unanticipated issues. Should you encounter any hiccups during the process, CanaryPy enables a swift and seamless rollback to maintain stability.

It integrates a FastAPI application for managing APIs, a Streamlit application for interactive web dashboards, a command-line interface (CLI) for enabling user interaction through terminal commands, and a Python client for incorporating CanaryPy functionalities in your Python applications.

With CanaryPy, you gain the ability to test the waters with new features or updates, ensuring they function as expected in a live environment but affecting only a small subset of data pipelines. CanaryPy's canary release strategy promotes safer deployments, contributing to overall enhanced performance and robustness of your data platform.

How it works

CanaryPy has three main entities:

  • Product: It is an application that will have releases.
  • Release: It is any version of your Product. It can be of two types: active and canary. A release is created as canary which will be tested against the active using a linear growth rollout strategy. If the canary performs well during all the phases, it'll be promoted to active. The release performance is measure based on its signals.
  • Signal: It the execution result of a release. It can have a success or failed state. Typically, is the result of your job.

CanaryPy also includes a CLI to manage the products, releases, and signals. The CLI is built using the Click library.

The CLI uses the FastAPI application as the backend and therefore the following environment variables need to be set to run the CLI:

  • CANARYPY_URL: The base URL of the FastAPI application. Defaults to http://localhost:8080.

Features available

Products

Products are the fist step in the CanaryPy system. A product is a software application that is being released using the CanaryPy system. The CLI provides the following commands to manage products:

canapyry product create

This will prompt the user to enter the details of the product, and will create the product in the system.

Releases

Releases are the second step in the CanaryPy system. A release is a version of a product that is being released using the CanaryPy system. The CLI provides the following commands to manage releases:

canarypy release create --semver_version <semver> --artifact_url <product>

This will create a new release for a product. The semver version and the artifact URL are required parameters.

it's possible to fetch the latest stable release of a product using the python client as shown below:

from canarypy.client import CanaryPyClient
client = CanaryPyClient(base_url="http://localhost:8000")
client.get_latest_stable_version(product_name)

Signals

Signals are the third step in the CanaryPy system. A signal is the result of an execution of a product with a release. The CLI provides the following commands to manage signals:

canarypy signal create --status <status> --description <description> --instance-id <instance-id> -- semver-version <version> --artifact-url <artifact-url>

It's also possible to send signals to the CanaryPy system using the Python client as shown below:

from canarypy.client import CanaryPyClient
client = CanaryPyClient(base_url="http://localhost:8000")
client.send_signal_to_canary(artifact_url, version, instance_id, description, status)

Airflow Integration

CanaryPy provides a plugin to integrate your Airflow tasks with CanaryPy backend with a minimal effort. The plugin can be installed by executing:

pip install canarypy-airflow-plugin

Check this tutorial to understand how this integration works. The plugin code can be found here.

CanaryPy Deployment

CanaryPy is built around a modular architecture composed by an FastAPI application that host the rest APIs and a Streamlist application that show metrics about release performance. Both applications use a shared PostgreSQL database to store the data.

Setting up CanaryPy for a production environment involves tuning up these two components and making sure the shared PostgreSQL database they both depend on is ready to go. Let's get into the nuts and bolts of how to do that.

FastAPI Application

The FastAPI application serves as the backend for CanaryPy, providing RESTful APIs for managing products, releases, and signals.

Summary

The application provides endpoints for creating and retrieving products and their respective releases. It also includes endpoints for creating and retrieving signals related to each release.

The FastAPI application uses a PostgreSQL database to store the data.

Endpoints

The CanaryPy provides endpoints to manage products, releases, and signals. More details about the endpoints can be found in the /docs endpoint.

How to run

  1. The following environment variable can be set to start the FastAPI server:
    • CANARYPY_API_PORT: The base URL of the FastAPI application. Defaults to 8080.
    • CANARYPY_API_HOST: The base URL of the FastAPI application. Defaults to 0.0.0.0.
    • CANARYPY_API_RELOAD: Whether to reload the server when code changes are detected. Defaults to True.
    • CANARYPY_API_DEBUG: Whether to run the server in debug mode. Defaults to True.
    • CANARYPY_API_LOG_LEVEL: The log level for the server. Defaults to info.
    • CANARYPY_DB_CONN_STRING: The connection string for the database. Alternatively, you can set the connection details in separated environment variables:
      • CANARYPY_DB_USER: The username for the database.
      • CANARYPY_DB_PASSWORD: The password for the database.
      • CANARYPY_DB_HOST: The host for the database.
      • CANARYPY_DB_PORT: The port for the database.
      • CANARYPY_DB_NAME: The name of the database.
  2. Run the FastAPI application using the following command canarypy api start

Streamlit Application

The Streamlit application serves as a web-based user interface for visualizing the release metrics.

Summary

The application fetches the metrics data from the FastAPI backend and displays it in a user-friendly format, helping you understand the release trends and signal patterns.

The Streamlit application uses a PostgreSQL database to fetch the data for the dashboard.

How to run

  1. The following environment variable can be set to start the FastAPI server:
    • CANARYPY_DB_CONN_STRING: The connection string for the database. Alternatively, you can set the connection details in separated environment variables:
      • CANARYPY_DB_USER: The username for the database.
      • CANARYPY_DB_PASSWORD: The password for the database.
      • CANARYPY_DB_HOST: The host for the database.
      • CANARYPY_DB_PORT: The port for the database.
      • CANARYPY_DB_NAME: The name of the database.
  2. Run the Streamlit application: canarypy web start

Database Migrations

This application uses Alembic for database schema migrations. Alembic is a database migration tool for SQLAlchemy and allows us to automate changes to our database schema.

To perform the database migrations, we have encapsulated the necessary Alembic commands within a custom Click command. This simplifies the process, allowing you to upgrade your database by executing a single Python command.

Execute the following command to upgrade your database:

  1. The following environment variable can be set to start the FastAPI server:
    • CANARYPY_DB_CONN_STRING: The connection string for the database. Alternatively, you can set the connection details in separated environment variables:
      • CANARYPY_DB_USER: The username for the database.
      • CANARYPY_DB_PASSWORD: The password for the database.
      • CANARYPY_DB_HOST: The host for the database.
      • CANARYPY_DB_PORT: The port for the database.
      • CANARYPY_DB_NAME: The name of the database.
  2. Execute the following command to upgrade your database: canarypy db upgrade

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

canarypy-0.0.14-py3-none-any.whl (38.5 kB view details)

Uploaded Python 3

File details

Details for the file canarypy-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: canarypy-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 38.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for canarypy-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 56b34b607e963840025efc051de019845087dcf8de839f72fbb0d01268e007a6
MD5 741fc6827d5b2934664075903a90419f
BLAKE2b-256 43538f29d56da886df9735e58473ca6d7efee4c0683ac3a5c0f8c53f9c2f550c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page