Skip to main content

Cane - Categorical Attribute traNsformation Environment

Project description

Cane - Categorical Attribute traNsformation Environment

CANE is a simpler but powerful preprocessing method for machine learning.

At the moment offers 3 preprocessing methods:

--> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (https://doi.org/10.1109/IJCNN.2019.8851888), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data). Also providing the dictionary with the transformations for each column.

--> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (https://ieeexplore.ieee.org/document/8710472).

--> Finally it also has implemented a simpler standard One-Hot-Encoding method.

Installation

To install this package please run the following command

pip install cane 

Suggestions and feedback

Any feedback will be appreciated. For questions and other suggestions contact luis.matos@dsi.uminho.pt

Example

import pandas as pd
import cane
import timeit
x = [k for s in ([k] * n for k, n in [('a', 30000), ('b', 50000), ('c', 70000), ('d', 10000), ('e', 1000)]) for k in s]
df = pd.DataFrame({f'x{i}' : x for i in range(1, 13)})

dataPCP, dicionary = cane.pcp(df)  # uses the PCP method and only 1 core with perc == 0.05
dataPCP, dicionary = cane.pcp(df, n_coresJob=2)  # uses the PCP method and only 2 cores
dataPCP, dicionary = cane.pcp(df, n_coresJob=2,disableLoadBar = False)  # With Progress Bar

dataIDF = cane.idf(df)  # uses the IDF method and only 1 core
dataIDF = cane.idf(df, n_coresJob=2)  # uses the IDF method and only 2 core
dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False)  # With Progress Bar

dataH = cane.one_hot(df)  # without a column prefixer
dataH2 = cane.one_hot(df, column_prefix='column')  # it will use the original column name prefix
# (useful for when dealing with id number columns)
dataH3 = cane.one_hot(df, column_prefix='customColName')  # it will use a custom prefix defined by
# the value of the column_prefix
dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2)  # it will use the original column name prefix
# (useful for when dealing with id number columns)
# with 2 cores

dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2
                      ,disableLoadBar = False)  # With Progress Bar Active!
# with 2 cores

#Time Measurement in 10 runs
OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10)
IT = timeit.timeit(lambda:cane.idf(df),number = 10)
PT = timeit.timeit(lambda:cane.pcp(df),number = 10)
print("One-Hot Time:",OT)
print("IDF Time:",IT)
print("PCP Time:",PT)

#Time Measurment in 10 runs (multicore)
OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10)
ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=2),number = 10)
PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=2),number = 10)
print("One-Hot Time Multicore:",OTM)
print("IDF Time Multicore:",ITM)
print("PCP Time Multicore:",PTM)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cane-0.0.1.7.1.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cane-0.0.1.7.1-py3-none-any.whl (5.6 kB view details)

Uploaded Python 3

File details

Details for the file cane-0.0.1.7.1.tar.gz.

File metadata

  • Download URL: cane-0.0.1.7.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for cane-0.0.1.7.1.tar.gz
Algorithm Hash digest
SHA256 9b353a363926b07c7ec74c60ab4d9525095e61f58c765d0641bc1707f63fe6b6
MD5 0cc99356f51a8288890bd754582b17e9
BLAKE2b-256 f487c20b473f16e65a3847d7f29506b147162d110ff612e887415a0fdee33064

See more details on using hashes here.

File details

Details for the file cane-0.0.1.7.1-py3-none-any.whl.

File metadata

  • Download URL: cane-0.0.1.7.1-py3-none-any.whl
  • Upload date:
  • Size: 5.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for cane-0.0.1.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7a7b45b452c8c053b54a1d7656e74ace2c69dc6011403ae3af3331cbb55c74c7
MD5 dceeba6a4d928c441137feb75101de47
BLAKE2b-256 c37b4817b9bd4dae6d1ebf7c1da4ed3b64120d6c3d9e95cf6bb95a54a6d1c331

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page