Skip to main content

Cane - Categorical Attribute traNsformation Environment

Project description

Cane - Categorical Attribute traNsformation Environment

CANE is a simpler but powerful preprocessing method for machine learning.

At the moment offers 3 preprocessing methods:

--> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (https://doi.org/10.1109/IJCNN.2019.8851888), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data).

--> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (https://ieeexplore.ieee.org/document/8710472).

--> Finally it also has implemented a simpler standard One-Hot-Encoding method.

Installation

To install this package please run the following command

pip install cane 

Suggestions and feedback

Any feedback will be appreciated. For questions and other suggestions contact luis.matos@dsi.uminho.pt

Example

import pandas as pd
import cane
import timeit
x = [k for s in ([k] * n for k, n in [('a', 30000), ('b', 50000), ('c', 70000), ('d', 10000), ('e', 1000)]) for k in s]
df = pd.DataFrame({f'x{i}' : x for i in range(1, 130)})

dataPCP = cane.pcp(df)  # uses the PCP method and only 1 core with perc == 0.05
dataPCP = cane.pcp(df, n_coresJob=2)  # uses the PCP method and only 2 cores
dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False)  # With Progress Bar

#dicionary with the transformed data

dicionary = cane.dic_pcp(dataPCP)
print(dicionary)

dataIDF = cane.idf(df)  # uses the IDF method and only 1 core
dataIDF = cane.idf(df, n_coresJob=2)  # uses the IDF method and only 2 core
dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False)  # With Progress Bar

dataH = cane.one_hot(df)  # without a column prefixer
dataH2 = cane.one_hot(df, column_prefix='column')  # it will use the original column name prefix
# (useful for when dealing with id number columns)
dataH3 = cane.one_hot(df, column_prefix='customColName')  # it will use a custom prefix defined by
# the value of the column_prefix
dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2)  # it will use the original column name prefix
# (useful for when dealing with id number columns)
# with 2 cores

dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2
                      ,disableLoadBar = False)  # With Progress Bar Active!
# with 2 cores

#Time Measurement in 10 runs
print("Time Measurement in 10 runs (unicore)")
OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10)
IT = timeit.timeit(lambda:cane.idf(df),number = 10)
PT = timeit.timeit(lambda:cane.pcp(df),number = 10)
print("One-Hot Time:",OT)
print("IDF Time:",IT)
print("PCP Time:",PT)

#Time Measurement in 10 runs (multicore)
print("Time Measurement in 10 runs (multicore)")
OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=10),number = 10)
ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=10),number = 10)
PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=10),number = 10)
print("One-Hot Time Multicore:",OTM)
print("IDF Time Multicore:",ITM)
print("PCP Time Multicore:",PTM)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cane-0.0.1.7.3.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cane-0.0.1.7.3-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file cane-0.0.1.7.3.tar.gz.

File metadata

  • Download URL: cane-0.0.1.7.3.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for cane-0.0.1.7.3.tar.gz
Algorithm Hash digest
SHA256 18cc5ae9ce58e3a453b898d4d8329fc51d66cd412ed2da287ca90e3102a085fe
MD5 5b82648e61dbed8066c71b498cf4c551
BLAKE2b-256 0a0caec2464dd77437a948d70d576d4402465592bd640ed6979f4c01cd74962c

See more details on using hashes here.

File details

Details for the file cane-0.0.1.7.3-py3-none-any.whl.

File metadata

  • Download URL: cane-0.0.1.7.3-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for cane-0.0.1.7.3-py3-none-any.whl
Algorithm Hash digest
SHA256 40fba8674436aeaf9b31a25209dc09e29632f3893ae6fd7a219a70fedae62272
MD5 c6568706636e03cafac6e498ad77d480
BLAKE2b-256 ad9341c8e404c1047f0cfdf1c1398889a89eee7a54fea048a2399a35fb084aad

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page