Skip to main content

Cane - Categorical Attribute traNsformation Environment

Project description

Cane - Categorical Attribute traNsformation Environment

Downloads Downloads Downloads

CANE is a simpler but powerful preprocessing method for machine learning.

At the moment offers some preprocessing methods:

--> The Percentage Categorical Pruned (PCP) merges all least frequent levels (summing up to "perc" percent) into a single level as presented in (https://doi.org/10.1109/IJCNN.2019.8851888), which, for example, can be "Others" category. It can be useful when dealing with several amounts of categorical information (e.g., city data).

An example of this can be viewed by the following pdf:

View PDF.

Which the 1,000 highest frequency values (decreasing order) for the user city attribute for the TEST traffic data (which contains a total of 10,690 levels). For this attribute and when , PCP selects only the most frequent 688 levels (dashed vertical line) merging the other 10,002 infrequent levels into the "Others" label.

This method results in 689 binary inputs, which is much less than the 10690 binary inputs required by the standard one-hot transform (reduction of percentage points).

--> The Inverse Document Frequency (IDF) codifies the categorical levels into frequency values, where the closer to 0 means, the more frequent it is (https://ieeexplore.ieee.org/document/8710472).

--> Implementation of a simpler One-Hot-Encoding method.

--> Minmax and Standard scaler (based on sklearn functions) with column selection and multicore support. Also, it is possible to apply these transformations to specific columns only instead of the full dataset (follow the example). However it only works with numerical data (e.g., MSE, decision scores)

--> You can also provide a custom scaler version of your own! (check example)

Future Function ideas:

MultiColumn scale (based on the implementation of IDF and PCP) Scaling of IDF values (normalized IDF)

Installation

To install this package please run the following command

pip install cane

New

Version 2.0.3:

[x] - Introduced a scaler function implementation based from skelearn package but allowing to choose each columns you want to use and multiprocessing function.

[x] - Also you can provide a custom function of your own! (check Example)

Suggestions and feedback

Any feedback will be appreciated. For questions and other suggestions contact luis.matos@dsi.uminho.pt Found any bugs? Post Them on the github page of the project! (https://github.com/Metalkiler/Cane-Categorical-Attribute-traNsformation-Environment)

Thanks for the support!

Example

import pandas as pd
import cane
import timeit
import numpy as np
x = [k for s in ([k] * n for k, n in [('a', 30000), ('b', 50000), ('c', 70000), ('d', 10000), ('e', 1000)]) for k in s]
df = pd.DataFrame({f'x{i}' : x for i in range(1, 130)})

dataPCP = cane.pcp(df)  # uses the PCP method and only 1 core with perc == 0.05 for all columns
dataPCP = cane.pcp(df, n_coresJob=2)  # uses the PCP method and only 2 cores for all columns
dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False)  # With Progress Bar for all columns
dataPCP = cane.pcp(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"])  # With Progress Bar and specific columns



#dicionary with the transformed data

dicionary = cane.dic_pcp(dataPCP)
print(dicionary)

dataIDF = cane.idf(df)  # uses the IDF method and only 1 core for all columns 
dataIDF = cane.idf(df, n_coresJob=2)  # uses the IDF method and only 2 core for all columns
dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False)  # With Progress Bar for all columns
dataIDF = cane.idf(df, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","x2"]) # specific columns
dataIDF = cane.idf_multicolumn(df, columns_use = ["x1","x2"])  # aplication of specific multicolumn setting IDF


dataH = cane.one_hot(df)  # without a column prefixer
dataH2 = cane.one_hot(df, column_prefix='column')  # it will use the original column name prefix
# (useful for when dealing with id number columns)
dataH3 = cane.one_hot(df, column_prefix='customColName')  # it will use a custom prefix defined by
# the value of the column_prefix
dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2)  # it will use the original column name prefix
# (useful for when dealing with id number columns)
# with 2 cores

dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2
                      ,disableLoadBar = False)  # With Progress Bar Active with 2 cores

dataH4 = cane.one_hot(df, column_prefix='column', n_coresJob=2
                      ,disableLoadBar = False,columns_use = ["x1","x2"])  # With Progress Bar specific columns!



#specific example with multicolumn
x2 = [k for s in ([k] * n for k, n in [('a', 50),
                                       ('b', 10),
                                       ('c', 20),
                                       ('d', 15), 
                                       ('e', 5)]) for k in s]

x3 = [k for s in ([k] * n for k, n in [('a', 40),
                                       ('b', 20),
                                       ('c', 1),
                                       ('d', 1), 
                                       ('e', 38)]) for k in s]
df2 = pd.concat([pd.DataFrame({f'x{i}' : x2 for i in range(1, 3)}),pd.DataFrame({f'y{i}' : x3 for i in range(1, 3)})], axis=1)
dataPCP = cane.pcp(df2, n_coresJob=2,disableLoadBar = False)
print("normal PCP \n",dataPCP)
dataPCP2 = cane.pcp_multicolumn(df2, columns_use = ["x1","y1"])  # aplication of specific multicolumn setting PCP
print("multicolumn PCP \n",dataPCP2)

dataIDF = cane.idf(df2, n_coresJob=2,disableLoadBar = False, columns_use = ["x1","y1"]) # specific columns
print("normal idf \n",dataIDF)
dataIDF2 = cane.idf_multicolumn(df2, columns_use = ["x1","y1"])  # aplication of specific multicolumn setting IDF
print("multicolumn idf \n",dataIDF2)



#Time Measurement in 10 runs
print("Time Measurement in 10 runs (unicore)")
OT = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=1),number = 10)
IT = timeit.timeit(lambda:cane.idf(df),number = 10)
PT = timeit.timeit(lambda:cane.pcp(df),number = 10)
print("One-Hot Time:",OT)
print("IDF Time:",IT)
print("PCP Time:",PT)

#Time Measurement in 10 runs (multicore)
print("Time Measurement in 10 runs (multicore)")
OTM = timeit.timeit(lambda:cane.one_hot(df, column_prefix='column', n_coresJob=10),number = 10)
ITM = timeit.timeit(lambda:cane.idf(df,n_coresJob=10),number = 10)
PTM = timeit.timeit(lambda:cane.pcp(df,n_coresJob=10),number = 10)
print("One-Hot Time Multicore:",OTM)
print("IDF Time Multicore:",ITM)
print("PCP Time Multicore:",PTM)

Scaler Example with cane

These examples present the usage of cane with the standard methods (standard scaler e min max scaler). Also, it is presented how to implement a custom scaler function of your own with cane!

#New Scaler Function 



dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL'))
cane.scale_data(dfNumbers, n_cores = 3, scaleFunc="min_max") # all columns using 3 cores
cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="min_max") # scale specific columns
cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="std") #standard Scaler



#####################Custom Function Example#######################

#This will be an example file you of your custom function (e.g., "functions.py")
import pandas as pd
import numpy as np
import cane 

def customFunc(val):
       return pd.DataFrame([round((i - 1) / 3, 2) for i in val],columns=[val.name + "_custom_scalled_function])



### This is will be your main script

from functions import *
# with a custom function to apply to data:
if __name__ == "__main__":
    dfNumbers = pd.DataFrame(np.random.randint(0,100000,size=(100000, 12)), columns=list('ABCDEFGHIJKL'))
    cane.scale_data(dfNumbers, column=["A","B"], n_cores = 3, scaleFunc="custom", customfunc = customFunc)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cane-2.0.3.1.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cane-2.0.3.1-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file cane-2.0.3.1.tar.gz.

File metadata

  • Download URL: cane-2.0.3.1.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.5

File hashes

Hashes for cane-2.0.3.1.tar.gz
Algorithm Hash digest
SHA256 edab291b784cae09408f21f24453266eaf8b433d54411e08f132b84805b7722a
MD5 af87a730f474c6c26bc3105d11e324fc
BLAKE2b-256 41a3507e599b7b496bff6f3ca9306ac64e92cda27ac100f39ad20c2b0f6a3764

See more details on using hashes here.

File details

Details for the file cane-2.0.3.1-py3-none-any.whl.

File metadata

  • Download URL: cane-2.0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.5

File hashes

Hashes for cane-2.0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 468d4dc8007a847096bc50864984e6bcaab7f361ac2722e216274349fc0c3948
MD5 e68dd5b53bf6a62650b2e5bace9d6362
BLAKE2b-256 5c167841ef0db7ba4570de47480d09f227b2cee9cf4a66929a9887bfd37e43ed

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page