Skip to main content

Async GraphQL Helper Library

Project description

Cannula

CircleCI Documentation Status

GraphQL for people who like Python!

Why Cannula?

We wanted to make the world a better place, but we are programmers so we settled on making the web fun again. Too much attention has been given to Javascript client libraries. They all seem to compete on size and speed and features but most of them do not solve any of the actual problems you have. So while the todo application is quick and easy to follow the hard parts take a long time to complete.

Now a days if you want a fancy single page application you need to invest a good week or so planning out all the tools you will need to assemble your site. Every decision is full of sorrow and doubt as you google for the latest trends or how to setup unit tests. Or searching for a bootstrapped version of the library you like.

Using GraphQL you can simplify your web application stack and reduce dependencies to achieve the same customer experience without regret. By using just a few core libraries you can increase productivity and make your application easier to maintain.

Our Philosophy:

  1. Make your site easy to maintain.
  2. Document your code.
  3. Don't lock yourself into a framework.
  4. Be happy!

Installation

Requires Python 3.6 or greater! The only dependency is graphql-core-next.

pip3 install cannula

Quick Start

Here is a small hello world example:

import logging
import typing
import sys

import cannula
from cannula.middleware import DebugMiddleware

SCHEMA = cannula.gql("""
  type Message {
    text: String
  }
  type Query {
    hello(who: String): Message
  }
""")

logging.basicConfig(level=logging.DEBUG)

api = cannula.API(
  __name__,
  schema=SCHEMA,
  middleware=[
    DebugMiddleware()
  ]
)


class Message(typing.NamedTuple):
    text: str


# The query resolver takes a source and info objects
# and any arguments defined by the schema. Here we
# only accept a single argument `who`.
@api.resolver('Query')
async def hello(source, info, who):
    return Message(f"Hello, {who}!")

# Pre-parse your query to speed up your requests.
# Here is an example of how to pass arguments to your
# query functions.
SAMPLE_QUERY = cannula.gql("""
  query HelloWorld ($who: String!) {
    hello(who: $who) {
      text
    }
  }
""")


who = 'world'
if len(sys.argv) > 1:
    who = sys.argv[1]

print(api.call_sync(SAMPLE_QUERY, variables={'who': who}))

Now you should see the results if you run the sample on the command line:

$ python3 examples/hello.py
DEBUG:asyncio:Using selector: KqueueSelector
DEBUG:cannula.schema:Adding default empty Mutation type
DEBUG:cannula.middleware.debug:Resolving Query.hello expecting type Message
DEBUG:cannula.middleware.debug:Field Query.hello resolved: Message(text='Hello, world!') in 0.000108 seconds
DEBUG:cannula.middleware.debug:Resolving Message.text expecting type String
DEBUG:cannula.middleware.debug:Field Message.text resolved: 'Hello, world!' in 0.000067 seconds
ExecutionResult(
  data={'hello': {'text': 'Hello, world!'}},
  errors=None
)

$ python3 examples/hello.py Bob
DEBUG:asyncio:Using selector: KqueueSelector
DEBUG:cannula.schema:Adding default empty Mutation type
DEBUG:cannula.middleware.debug:Resolving Query.hello expecting type Message
DEBUG:cannula.middleware.debug:Field Query.hello resolved: Message(text='Hello, Bob!') in 0.000104 seconds
DEBUG:cannula.middleware.debug:Resolving Message.text expecting type String
DEBUG:cannula.middleware.debug:Field Message.text resolved: 'Hello, Bob!' in 0.000101 seconds
ExecutionResult(
  data={'hello': {'text': 'Hello, Bob!'}},
  errors=None
)

But what about Django integration or flask?

# pip install channels, Django
import cannula
from channels.db import database_sync_to_async
from django.contrib.auth.models import User

schema = cannula.gql("""
  type User {
    username: String   # Only expose the fields you actually use
    first_name: String
    last_name: String
    made_up_field: String
  }
  extend type Query {
    getUserById(user_id: String): User
  }
""")

@api.query()
async def getUserById(source, info, user_id):
    return await get_user(user_id)

@database_sync_to_async
def get_user(user_id):
    return User.objects.get(pk=user_id)

@api.resolve('User')
async def made_up_field(source, info):
    return f"{source.get_full_name()} is a lying lier there is no 'made_up_field'"

Since GraphQL is agnostic about where or how you store your data all you need to do is provide a function to resolve a query. The results you return just need to match the schema and you are done.

Django and sqlalchemy already provide tools to query the database. And they work quite well. Or you may choose to use an async database library to make concurrent requests work even better. Try them all and see what works best for your team and your use case.

Examples and Documentation

Documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cannula-0.10.0.tar.gz (15.4 kB view details)

Uploaded Source

Built Distribution

cannula-0.10.0-py3-none-any.whl (19.7 kB view details)

Uploaded Python 3

File details

Details for the file cannula-0.10.0.tar.gz.

File metadata

  • Download URL: cannula-0.10.0.tar.gz
  • Upload date:
  • Size: 15.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.26.0

File hashes

Hashes for cannula-0.10.0.tar.gz
Algorithm Hash digest
SHA256 6b6b29e6e864a78d44c198764b4a7d9cd130e97a938134772943083632fa9168
MD5 c022ad4e9139b5ffa7ef3e86b62df0c7
BLAKE2b-256 1db7f3a13acc4bddc15d2ed2423b849b2b08065abf2cb15828adea9f963667ea

See more details on using hashes here.

File details

Details for the file cannula-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: cannula-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 19.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.26.0

File hashes

Hashes for cannula-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4f0a5d1f458745036ef3969acf8fce1fb840dddf46742451445db7345f59af40
MD5 020e21c919200167b2e96d130ab41a65
BLAKE2b-256 4f5abd9d07b1c132f2fb2bd4cef6fe871741ea31cabd375d2bfe2074f875f6db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page