Skip to main content

A minimal package that detect Cantonese sentences in Traditional Chinese text.

Project description

CantoneseDetect 粵語特徵分類器

license

本項目為 canto-filter 之後續。canto-filter 得 4 個分類標籤且判斷邏輯更加快速簡單,適合在線快速篩選判別文本或者其他要求低延遲、速度快嘅應用場合。本項目採用更精細嘅判斷邏輯,有 6 個分類標籤,準確度更高,但速度亦會相對 canto-filter 更慢。

This is an extension of the canto-filter project. canto-filter has only 4 output labels. It has a simipler classification logic and is faster, more suitable for use cases which require low-latency or high classification speed. This package has 6 output and uses a more sophisticated classification logic for more fine-grained classification. It has higher classification accuracy but slower performance.

引用 Citation

分類器採用嘅分類標籤及基準,參考咗對使用者嘅語言意識形態嘅研究。討論分類準則時,請引用:

The definitions and boundaries of the labels depend on the user's language ideology. When discussing the criteria adopted by this tool, please cite:

Chaak-ming Lau, Mingfei Lau, and Ann Wai Huen To. 2024. The Extraction and Fine-grained Classification of Written Cantonese Materials through Linguistic Feature Detection. In Proceedings of the 2nd Workshop on Resources and Technologies for Indigenous, Endangered and Lesser-resourced Languages in Eurasia (EURALI) @ LREC-COLING 2024, pages 24–29, Torino, Italia. ELRA and ICCL.


簡介 Introduction

分類方法係利用粵語同書面中文嘅特徵字詞,用 Regex 方式加以識別。分類器主要有兩個主要參數,--split同埋--quotes,兩個默認都係False

The filter is based on Regex rules and detects lexical features specific to Cantonese or Written-Chiense.

分句參數--split

呢個參數默認關閉,如果打開,分類器會用句號、問號、感歎號等標點符號將輸入文本切成單句,對每個單句分類判斷,然後再按照下面判別標準整合嚟得到最終分類。所以呢個參數喺輸入都係單句嘅情況下唔會有區別,只會降低運行速度。喺官粵混雜比較多而且比較長嘅文本輸入下會有更多唔同。

目前因為整合分句判斷嘅邏輯比較嚴,所以如果打開,會相比於關閉更加容易將其他類別判斷為mixed。所以對於篩選純粵文嘅用途嚟講,打開呢個參數會提高 precision 但降低 recall。

分類標籤參數--quotes

呢個參數默認關閉,分類器淨係會將輸入分為 4 類。如果打開,就會再增加兩類總共有 6 個標籤。打開後分類器會將引號內嘅文本抽出嚟,將佢哋同引號外文本分開判斷。下面一段就係介紹呢四個同六個標籤。

標籤 Labels

分類器會將輸入文本分成四類(粗疏)或六類(精細),分類如下:

The classifiers output four (coarse) or six (fine-grained) categories. The labels are:

  1. Cantonese: 純粵文,僅含有粵語特徵字詞,例如“你喺邊度” | Pure Cantonese text, contains Cantonese-featured words. E.g. 你喺邊度
  2. SWC: 書面中文,係一個僅含有書面語特徵字詞,例如“你在哪裏” | Pure Standard Written Chinese (SWC) text, contains Mandarin-feature words. E.g. 你在哪裏
  3. Mixed:書粵混雜文,同時含有書面語同粵語特徵嘅字詞,例如“是咁的” | Mixed Cantonese-Mandarin text, contains both Cantonese and Mandarin-featured words. E.g. 是咁的
  4. Neutral:無特徵中文,唔含有官話同粵語特徵,既可以當成粵文亦可以當成官話文,例如“去學校讀書” | No feature Chinese text, contains neither Cantonese nor Mandarin feature words. Such sentences can be used for both Cantonese and Mandarin text corpus. E.g. 去學校讀書
  5. MixedQuotesInSWC : 書面中文,引文入面係 Mixed | Mixed contents quoted within SWC text
  6. CantoneseQuotesInSWC : 書面中文,引文入面係純粵文 cantonese | Cantonese contents quoted within SWC text

系統要求 Requirement

Python >= 3.11

安裝 Installation

pip install cantonesedetect

用法 Usage

可以通過 Python 函數嚟引用,亦可以直接 CLI 調用。

You can call the Python API or this library, or run it directly in CLI.

Python

用下面嘅方法創建一個 Detector,然後直接調用 judge()就可以得到分類結果:

Initialize a Detector and call the judge() function on inputs, and you will get the classification outputs.

from cantonesedetect import CantoneseDetector

# 默認情況下 use_quotes=False, split_seg=False, get_analysis=False
detector = CantoneseDetector()

detector.judge('你喺邊度') # cantonese
detector.judge('你在哪裏') # swc
detector.judge('是咁的')  # mixed
detector.judge('去學校讀書')  # neutral
detector.judge('他説:“係噉嘅。”')  # cantonese_quotes_in_swc
detector.judge('那就「是咁的」')  # mixed_quotes_in_swc

如果想要用引號抽取判別、分句判別同埋獲得分析結果,可以:

If you want to judge inputs based on matrix-quote-splitting, or spliting into segments, you can:

from cantonesedetect import Detector

detector = Detector(use_quotes=True, split_seg=True, get_analysis=True)

judgement, document_features = detector.judge("他説:「我哋今晚食飯。你想去邊度食?」")

# 打印分析結果
# Print analysis results
print(document_features.get_analysis())

# `document_features` 入面有每個分句嘅 `document_segments_features` 同 `document_segments_judgements`
# `document_features` object contains `document_segments_features` which is a list of segment features
print(document_features.document_segments_features[0].canto_feature)
print(document_features.document_segments_features[0].canto_exclude)
print(document_features.document_segments_features[0].swc_feature)
print(document_features.document_segments_features[0].swc_exclude)
# Also contains `document_segments_judgements` which is a list of judgements of the segments
print([j.value for j in document_features.document_segments_judgements])

CLI

如果直接喺 CLI 調用嘅話,只需要指明--input就得。 --quotes--split--print_analysis三個參數都默認關閉,如果標明就會打開:

If you run directly in CLI, simply specify the --input. The optional arguments --quotes--split--print_analysis are all False by default, and you can turn them on by specifying them.

cantonesedetect --input input.txt
# 開啓引號抽取判別、分句判別並且打印分析結果
# Enable matrix-quotes-splitting, segment-splitting and printing the analysis.
cantonesedetect --input input.txt --quotes --split --print_analysis

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cantonesedetect-1.1.1.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

cantonesedetect-1.1.1-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file cantonesedetect-1.1.1.tar.gz.

File metadata

  • Download URL: cantonesedetect-1.1.1.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cantonesedetect-1.1.1.tar.gz
Algorithm Hash digest
SHA256 91e2d69f5a5bbcd59a4c42a7e3bfbb66ca9fddd4d86e1924a38272051422b3ab
MD5 22ebcf6cb3c5ef6cbfde5fce5caeb416
BLAKE2b-256 d1071f5d321b9448016e283ad48d68b5456562e2dbac2e7c2c342c155e1b5cec

See more details on using hashes here.

File details

Details for the file cantonesedetect-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for cantonesedetect-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bd55787c2bf58bd5777133b66de30f19a19eb4b7afc88b8da893839999a10af8
MD5 4625fdbb2d91a42bca4a7b1d95ed5c9a
BLAKE2b-256 d3e9e300ce8bbcbeaf552893bdcfc1c3b8f72b3cf9a438a725386c80d9b0911e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page