A flexible multimodal AI library for advanced contextual understanding and deployment.
Project description
CapibaraENT CLI
CapibaraENT is a command-line tool for training, evaluating, and deploying Capibara-based language models, optimized for TPUs and featuring hyperparameter optimization.
Features
- Training and evaluation of Capibara models
- Built-in TPU support
- Hyperparameter optimization
- Model deployment
- Performance measurement
- Docker container execution (optional)
- Integration with Weights & Biases for experiment tracking
- New layers and sub-models: Support for the latest modeling layers and advanced sub-models.
Requirements
- Python 3.7+
- JAX (for TPU optimization)
- TensorFlow
- Weights & Biases
- Docker (optional, for container execution)
Installation
-
Clone this repository:
git clone https://github.com/anachroni-io/capibaraent-cli.git cd capibaraent-cli
-
Install dependencies:
pip install -r requirements.txt
-
Set up Weights & Biases:
wandb login
Usage
The CapibaraENT CLI offers various options for working with Capibara models:
python capibaraent_cli.py [options]
Available options
--log-level
: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)--train
: Train the model--evaluate
: Evaluate the model--optimize
: Perform hyperparameter optimization--use-docker
: Run the model inside Docker (optional, commented)--deploy
: Deploy the model--measure-performance
: Measure the model's performance--model
: Path to the model YAML file (for deserialization)--new-layer
: (optional) Activate new modeling layers--sub-model
: (optional) Specify sub-models to use
Usage Examples
-
Train a model:
python capibaraent_cli.py --train
-
Evaluate a model:
python capibaraent_cli.py --evaluate
-
Perform hyperparameter optimization:
python optimize_hyperparameters.py
-
Deploy a model:
python capibaraent_cli.py --deploy
-
Measure model performance:
python capibaraent_cli.py --measure-performance
-
Run a model in Docker (optional, if Docker is set up):
python capibaraent_cli.py --use-docker
Configuration
Model configuration is handled through environment variables and YAML files. Key configuration parameters include:
CAPIBARA_LEARNING_RATE
CAPIBARA_BATCH_SIZE
CAPIBARA_MAX_LENGTH
CAPIBARA_USE_TPU
WANDB_PROJECT
WANDB_ENTITY
CAPIBARA_NEW_LAYER
(new layer)CAPIBARA_SUB_MODEL
(sub-model)
Example .env
file
CAPIBARA_LEARNING_RATE=0.001
CAPIBARA_BATCH_SIZE=32
CAPIBARA_MAX_LENGTH=512
CAPIBARA_USE_TPU=True
WANDB_PROJECT=my_project
WANDB_ENTITY=my_entity
CAPIBARA_NEW_LAYER=True
CAPIBARA_SUB_MODEL=my_sub_model
For a full list of configuration options, refer to the .env.example
file.
Hyperparameter Optimization
To perform hyperparameter optimization:
-
Ensure your Weights & Biases project is set up.
-
Run the optimization script:
python optimize_hyperparameters.py
-
View the results in your Weights & Biases dashboard.
Development
To contribute to the project:
- Fork the repository
- Create a new branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
Distributed under the MIT License. See LICENSE
for more information.
Contact
Marco Durán - marco@anachroni.co
Project Link: https://github.com/anachroni-io/capibaraent-cli
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file capibara_ent-1.2.1.tar.gz
.
File metadata
- Download URL: capibara_ent-1.2.1.tar.gz
- Upload date:
- Size: 28.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 251242483c1586ef2013d647bf48d29df17271a4c2d9e176daecee1527a0a380 |
|
MD5 | 8e56d742c19aafa1f4795b3e9250d729 |
|
BLAKE2b-256 | a558ebad67149362da809553c0d7beb8e31fa750b991f6a200d1f56d13629a74 |
File details
Details for the file capibara_ent-1.2.1-py3-none-any.whl
.
File metadata
- Download URL: capibara_ent-1.2.1-py3-none-any.whl
- Upload date:
- Size: 38.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a42255fa8935fe042b314a81a751d4406d3666e1781f5e6a621690b4dc004a1 |
|
MD5 | 3d126efa8d8f68f16d8c7e8180301bd6 |
|
BLAKE2b-256 | e764b6aa8d839b5c1614dfd9cee1cb0daaea7a6a04da25c22fcb0fe6597fe848 |