Skip to main content

Un modelo de lenguaje avanzado que integra Mamba SSM, manejo multilingüe y características éticas

Project description

CapibaraENT CLI

CapibaraENT is a command-line tool for training, evaluating, and deploying Capibara-based language models, optimized for TPUs.

Features

  • Training and evaluation of Capibara models
  • Built-in TPU support
  • Model deployment
  • Performance measurement
  • Docker container execution
  • Model deserialization from JSON

Requirements

  • Python 3.7+
  • PyTorch 1.8+
  • PyTorch/XLA
  • Docker (optional, for container execution)

Installation

  1. Clone this repository:
  git clone https://github.com/your-username/capibaraent-cli.git
  cd capibaraent-cli
  1. Install dependencies:
   pip install -r requirements.txt

Usage

The CapibaraENT CLI offers various options for working with Capibara models:

python capibaraent_cli.py [options]

Available options:

  • --log-level: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
  • --train: Train the model
  • --evaluate: Evaluate the model
  • --use-docker: Run the model inside Docker
  • --deserialize-model: Deserialize the model from JSON
  • --deploy: Deploy the model
  • --measure-performance: Measure the model's performance
  • --model: Path to the model JSON file (for deserialization)

Usage Examples

  1. Train a model:
   python capibaraent_cli.py --train
  1. Evaluate a model:
   python capibaraent_cli.py --evaluate
  1. Deploy a model:
   python capibaraent_cli.py --deploy
  1. Measure model performance:

    python capibaraent_cli.py --measure-performance
    
  2. Run a model in Docker:

    python capibaraent_cli.py --use-docker
    
  3. Deserialize and run a model from JSON:

   python capibaraent_cli.py --deserialize-model --model model.json

Configuration

Model configuration is handled through the core/config.py file. To modify the default settings, edit this file directly. Key configuration parameters include:

  • input_dim
  • batch_size
  • learning_rate
  • device_type

Example of core/config.py:

Development

To contribute to the project:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Marco Durán - marco@anachroni.co

Project Link: https://github.com/anachroni-io/capibaraent-cli

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

capibara_ent-0.1.1.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

capibara_ent-0.1.1-py3-none-any.whl (3.0 kB view details)

Uploaded Python 3

File details

Details for the file capibara_ent-0.1.1.tar.gz.

File metadata

  • Download URL: capibara_ent-0.1.1.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-0.1.1.tar.gz
Algorithm Hash digest
SHA256 14892b290b5252197e26ff87544106c86287e106b3b3f6fa69f54ca23cf55a8d
MD5 9d89ad8fa530f4bdaff47838aee186ae
BLAKE2b-256 b1ea2f9d4f433ed0bc6077365914a669c9fd68f82e5c64d5a947927242f6e737

See more details on using hashes here.

File details

Details for the file capibara_ent-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: capibara_ent-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 3.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ee1d3c33b365bef09f4ec60f769770e248abc1f54db9f5ef4c7faed304eea07f
MD5 bb8fd92f819056b3d9cdadd96648419a
BLAKE2b-256 769c8b0538d66c07c428a14c71bba1e1cd0053ab348cb794d51e72fe1bbb0ed5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page