A flexible multimodal AI library for advanced contextual understanding and deployment.
Project description
CapibaraENT CLI
CapibaraENT is a command-line tool for training, evaluating, and deploying Capibara-based language models, optimized for TPUs and featuring hyperparameter optimization.
Features
- Training and evaluation of Capibara models
- Built-in TPU support
- Hyperparameter optimization
- Model deployment
- Performance measurement
- Docker container execution
- Model deserialization from JSON
- Integration with Weights & Biases for experiment tracking
Requirements
- Python 3.7+
- PyTorch 1.8+
- PyTorch/XLA
- JAX (for TPU optimization)
- Weights & Biases
- Docker (optional, for container execution)
Installation
-
Clone this repository:
git clone https://github.com/your-username/capibaraent-cli.git cd capibaraent-cli
-
Install dependencies:
pip install -r requirements.txt
-
Set up Weights & Biases:
wandb login
Usage
The CapibaraENT CLI offers various options for working with Capibara models:
python capibaraent_cli.py [options]
Available options:
--log-level
: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)--train
: Train the model--evaluate
: Evaluate the model--optimize
: Perform hyperparameter optimization--use-docker
: Run the model inside Docker--deserialize-model
: Deserialize the model from JSON--deploy
: Deploy the model--measure-performance
: Measure the model's performance--model
: Path to the model JSON file (for deserialization)
Usage Examples
- Train a model:
python capibaraent_cli.py --train
Evaluate a model:
python capibaraent_cli.py --evaluate
-
Perform hyperparameter optimization:
python optimize_hyperparameters.py
-
Deploy a model:
python capibaraent_cli.py --deploy
-
Measure model performance:
python capibaraent_cli.py --measure-performance
-
Run a model in Docker:
python capibaraent_cli.py --use-docker
-
Deserialize and run a model from JSON:
python capibaraent_cli.py --deserialize-model --model model.json
Configuration
Model configuration is handled through environment variables and the .env
file. Key configuration parameters include:
CAPIBARA_LEARNING_RATE
CAPIBARA_BATCH_SIZE
CAPIBARA_MAX_LENGTH
CAPIBARA_USE_TPU
WANDB_PROJECT
WANDB_ENTITY
For a full list of configuration options, refer to the .env.example
file.
Hyperparameter Optimization
To perform hyperparameter optimization:
-
Ensure your Weights & Biases project is set up.
-
Run the optimization script:
python optimize_hyperparameters.py
-
View the results in your Weights & Biases dashboard.
Development
To contribute to the project:
- Fork the repository
- Create a new branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
Distributed under the MIT License. See LICENSE
for more information.
Contact
Marco Durán - marco@anachroni.co
Project Link: https://github.com/anachroni-io/capibaraent-cli
Documentation
To generate the documentation:
Install the required packages:
pip install -r docs/requirements.txt
Generate the HTML documentation:
cd docs
make html
Open docs/_build/html/index.html
in your web browser to view the documentation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file capibara_ent-1.1.0.tar.gz
.
File metadata
- Download URL: capibara_ent-1.1.0.tar.gz
- Upload date:
- Size: 30.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ee80f3fc79b51d38ec8856dc653ff1fa68e0e48e0d9af3c4848ef37a3ccf3508 |
|
MD5 | dc17c288e4ace42a9aa0d6a6a53f3a7b |
|
BLAKE2b-256 | 701299a1e8e10e91881066dc017e53af7aea52e0120045dce5a04821d0615a77 |
File details
Details for the file capibara_ent-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: capibara_ent-1.1.0-py3-none-any.whl
- Upload date:
- Size: 45.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5aa2340a1284b291028c3a4e891d26edf9a436629575413e5f97117ca505307 |
|
MD5 | bc6a4bcfa05ad7b9f018ce0a817a0ba7 |
|
BLAKE2b-256 | 4cd8d3d4a26c9930545ecbf30640d43c9fc507d940ed6b1681fbd6730e243319 |