Skip to main content

A flexible multimodal AI library for advanced contextual understanding and deployment.

Project description

CapibaraENT CLI

Capibara SSBD Model

CapibaraENT is a command-line tool for training, evaluating, and deploying Capibara-based language models, optimized for TPUs and featuring hyperparameter optimization.

Features

  • Training and evaluation of Capibara models
  • Built-in TPU support
  • Hyperparameter optimization
  • Model deployment
  • Performance measurement
  • Docker container execution
  • Model deserialization from JSON
  • Integration with Weights & Biases for experiment tracking

Requirements

  • Python 3.7+
  • PyTorch 1.8+
  • PyTorch/XLA
  • JAX (for TPU optimization)
  • Weights & Biases
  • Docker (optional, for container execution)

Installation

  1. Clone this repository:

    git clone https://github.com/your-username/capibaraent-cli.git
    cd capibaraent-cli
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up Weights & Biases:

    wandb login
    

Usage

The CapibaraENT CLI offers various options for working with Capibara models:

python capibaraent_cli.py [options]

Available options:

  • --log-level: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
  • --train: Train the model
  • --evaluate: Evaluate the model
  • --optimize: Perform hyperparameter optimization
  • --use-docker: Run the model inside Docker
  • --deserialize-model: Deserialize the model from JSON
  • --deploy: Deploy the model
  • --measure-performance: Measure the model's performance
  • --model: Path to the model JSON file (for deserialization)

Usage Examples

  1. Train a model:
   python capibaraent_cli.py --train

Evaluate a model:

   python capibaraent_cli.py --evaluate
  1. Perform hyperparameter optimization:

    python optimize_hyperparameters.py
    
  2. Deploy a model:

    python capibaraent_cli.py --deploy
    
  3. Measure model performance:

    python capibaraent_cli.py --measure-performance
    
  4. Run a model in Docker:

    python capibaraent_cli.py --use-docker
    
  5. Deserialize and run a model from JSON:

   python capibaraent_cli.py --deserialize-model --model model.json

Configuration

Model configuration is handled through environment variables and the .env file. Key configuration parameters include:

  • CAPIBARA_LEARNING_RATE
  • CAPIBARA_BATCH_SIZE
  • CAPIBARA_MAX_LENGTH
  • CAPIBARA_USE_TPU
  • WANDB_PROJECT
  • WANDB_ENTITY

For a full list of configuration options, refer to the .env.example file.

Hyperparameter Optimization

To perform hyperparameter optimization:

  1. Ensure your Weights & Biases project is set up.

  2. Run the optimization script:

    python optimize_hyperparameters.py
    
  3. View the results in your Weights & Biases dashboard.

Development

To contribute to the project:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Marco Durán - marco@anachroni.co

Project Link: https://github.com/anachroni-io/capibaraent-cli

Documentation

To generate the documentation:

Install the required packages:

   pip install -r docs/requirements.txt

Generate the HTML documentation:

   cd docs
   make html

Open docs/_build/html/index.html in your web browser to view the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

capibara_ent-1.1.0.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

capibara_ent-1.1.0-py3-none-any.whl (45.2 kB view details)

Uploaded Python 3

File details

Details for the file capibara_ent-1.1.0.tar.gz.

File metadata

  • Download URL: capibara_ent-1.1.0.tar.gz
  • Upload date:
  • Size: 30.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-1.1.0.tar.gz
Algorithm Hash digest
SHA256 ee80f3fc79b51d38ec8856dc653ff1fa68e0e48e0d9af3c4848ef37a3ccf3508
MD5 dc17c288e4ace42a9aa0d6a6a53f3a7b
BLAKE2b-256 701299a1e8e10e91881066dc017e53af7aea52e0120045dce5a04821d0615a77

See more details on using hashes here.

File details

Details for the file capibara_ent-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: capibara_ent-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b5aa2340a1284b291028c3a4e891d26edf9a436629575413e5f97117ca505307
MD5 bc6a4bcfa05ad7b9f018ce0a817a0ba7
BLAKE2b-256 4cd8d3d4a26c9930545ecbf30640d43c9fc507d940ed6b1681fbd6730e243319

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page