Skip to main content

A flexible multimodal AI library for advanced contextual understanding and deployment.

Project description

CapibaraENT CLI

Capibara SSBD Model

CapibaraENT is a command-line tool for training, evaluating, and deploying Capibara-based language models, optimized for TPUs and featuring hyperparameter optimization.

Features

  • Training and evaluation of Capibara models
  • Built-in TPU support
  • Hyperparameter optimization
  • Model deployment
  • Performance measurement
  • Docker container execution
  • Model deserialization from JSON
  • Integration with Weights & Biases for experiment tracking

Requirements

  • Python 3.7+
  • PyTorch 1.8+
  • PyTorch/XLA
  • JAX (for TPU optimization)
  • Weights & Biases
  • Docker (optional, for container execution)

Installation

  1. Clone this repository:

    git clone https://github.com/your-username/capibaraent-cli.git
    cd capibaraent-cli
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up Weights & Biases:

    wandb login
    

Usage

The CapibaraENT CLI offers various options for working with Capibara models:

python capibaraent_cli.py [options]

Available options:

  • --log-level: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
  • --train: Train the model
  • --evaluate: Evaluate the model
  • --optimize: Perform hyperparameter optimization
  • --use-docker: Run the model inside Docker
  • --deserialize-model: Deserialize the model from JSON
  • --deploy: Deploy the model
  • --measure-performance: Measure the model's performance
  • --model: Path to the model JSON file (for deserialization)

Usage Examples

  1. Train a model:
   python capibaraent_cli.py --train

Evaluate a model:

   python capibaraent_cli.py --evaluate
  1. Perform hyperparameter optimization:

    python optimize_hyperparameters.py
    
  2. Deploy a model:

    python capibaraent_cli.py --deploy
    
  3. Measure model performance:

    python capibaraent_cli.py --measure-performance
    
  4. Run a model in Docker:

    python capibaraent_cli.py --use-docker
    
  5. Deserialize and run a model from JSON:

   python capibaraent_cli.py --deserialize-model --model model.json

Configuration

Model configuration is handled through environment variables and the .env file. Key configuration parameters include:

  • CAPIBARA_LEARNING_RATE
  • CAPIBARA_BATCH_SIZE
  • CAPIBARA_MAX_LENGTH
  • CAPIBARA_USE_TPU
  • WANDB_PROJECT
  • WANDB_ENTITY

For a full list of configuration options, refer to the .env.example file.

Hyperparameter Optimization

To perform hyperparameter optimization:

  1. Ensure your Weights & Biases project is set up.

  2. Run the optimization script:

    python optimize_hyperparameters.py
    
  3. View the results in your Weights & Biases dashboard.

Development

To contribute to the project:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Marco Durán - marco@anachroni.co

Project Link: https://github.com/anachroni-io/capibaraent-cli

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

capibara_ent-1.1.1.tar.gz (30.1 kB view details)

Uploaded Source

Built Distribution

capibara_ent-1.1.1-py3-none-any.whl (45.1 kB view details)

Uploaded Python 3

File details

Details for the file capibara_ent-1.1.1.tar.gz.

File metadata

  • Download URL: capibara_ent-1.1.1.tar.gz
  • Upload date:
  • Size: 30.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-1.1.1.tar.gz
Algorithm Hash digest
SHA256 6599ee4bef9419ee22771bbeefb8ee92ed01f24a827c019059e07d56d913c5da
MD5 be9f59ca8aba1e0880f08aeeca6d2367
BLAKE2b-256 5bc3e4b2a3936a1100bd1435c087d03c66c7a78d32726704040c8f9b2c8035ee

See more details on using hashes here.

File details

Details for the file capibara_ent-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: capibara_ent-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 45.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 82191febafd5dd334ebb56eed4ab3aa6147a2e3816d7e19ac9763b349a75ab71
MD5 f850efdb21702620dbe6c7d43967a77b
BLAKE2b-256 ee0ee74ad0f4992427553ae4fb59803783d1f1f33d46ad3d494659db8ed23d6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page