Skip to main content

A flexible multimodal AI library for advanced contextual understanding and deployment.

Project description

CapibaraENT CLI

Capibara SSBD Model

CapibaraENT is a command-line tool for training, evaluating, and deploying Capibara-based language models, optimized for TPUs and featuring hyperparameter optimization.

Features

  • Training and evaluation of Capibara models
  • Built-in TPU support
  • Hyperparameter optimization
  • Model deployment
  • Performance measurement
  • Docker container execution
  • Model deserialization from JSON
  • Integration with Weights & Biases for experiment tracking

Requirements

  • Python 3.7+
  • PyTorch 1.8+
  • PyTorch/XLA
  • JAX (for TPU optimization)
  • Weights & Biases
  • Docker (optional, for container execution)

Installation

  1. Clone this repository:

    git clone https://github.com/your-username/capibaraent-cli.git
    cd capibaraent-cli
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Set up Weights & Biases:

    wandb login
    

Usage

The CapibaraENT CLI offers various options for working with Capibara models:

python capibaraent_cli.py [options]

Available options:

  • --log-level: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
  • --train: Train the model
  • --evaluate: Evaluate the model
  • --optimize: Perform hyperparameter optimization
  • --use-docker: Run the model inside Docker
  • --deserialize-model: Deserialize the model from JSON
  • --deploy: Deploy the model
  • --measure-performance: Measure the model's performance
  • --model: Path to the model JSON file (for deserialization)

Usage Examples

  1. Train a model:
   python capibaraent_cli.py --train

Evaluate a model:

   python capibaraent_cli.py --evaluate
  1. Perform hyperparameter optimization:

    python optimize_hyperparameters.py
    
  2. Deploy a model:

    python capibaraent_cli.py --deploy
    
  3. Measure model performance:

    python capibaraent_cli.py --measure-performance
    
  4. Run a model in Docker:

    python capibaraent_cli.py --use-docker
    
  5. Deserialize and run a model from JSON:

   python capibaraent_cli.py --deserialize-model --model model.json

Configuration

Model configuration is handled through environment variables and the .env file. Key configuration parameters include:

  • CAPIBARA_LEARNING_RATE
  • CAPIBARA_BATCH_SIZE
  • CAPIBARA_MAX_LENGTH
  • CAPIBARA_USE_TPU
  • WANDB_PROJECT
  • WANDB_ENTITY

For a full list of configuration options, refer to the .env.example file.

Hyperparameter Optimization

To perform hyperparameter optimization:

  1. Ensure your Weights & Biases project is set up.

  2. Run the optimization script:

    python optimize_hyperparameters.py
    
  3. View the results in your Weights & Biases dashboard.

Development

To contribute to the project:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Marco Durán - marco@anachroni.co

Project Link: https://github.com/anachroni-io/capibaraent-cli

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

capibara_ent-1.1.2.tar.gz (30.3 kB view details)

Uploaded Source

Built Distribution

capibara_ent-1.1.2-py3-none-any.whl (45.1 kB view details)

Uploaded Python 3

File details

Details for the file capibara_ent-1.1.2.tar.gz.

File metadata

  • Download URL: capibara_ent-1.1.2.tar.gz
  • Upload date:
  • Size: 30.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-1.1.2.tar.gz
Algorithm Hash digest
SHA256 1725cddb6655059e270c59c5085b879e214d136b5228a7c0f855a85cdc644baa
MD5 315504054ce4cb910fa41152d5172d04
BLAKE2b-256 d28e5c68484752bf5dad6f35e638e49ab97faf271beeeb796c3158165be9ee8e

See more details on using hashes here.

File details

Details for the file capibara_ent-1.1.2-py3-none-any.whl.

File metadata

  • Download URL: capibara_ent-1.1.2-py3-none-any.whl
  • Upload date:
  • Size: 45.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for capibara_ent-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1010312a997d5e77a589df46b441acbe2c3c4a65f4cd5e62adc41cb360c70484
MD5 770a631f8ad879ce2b89935bd3e42a43
BLAKE2b-256 ef207fba1ee6fcbb750e5f039dfbb9e72618daac611ddb07d091b44c929ec12d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page