Skip to main content

Capstone Text Mining Techniques

Reason this release was yanked:

snorkel

Project description

CAPSTONE-TEXT-MINING README

Version 0.0.5

What is it?

The Capstone-Text-Mining is a Python package developed for a graduate analytics program capstone project for a specific client. The client is a data analytics consulting and software-as-a-service provider with its own Machine Learning Operations (MLOps) Platform. The client specializes in paid search and marketing analytics.

The package allows an end user to apply text mining and natural language processing (NLP) techniques to analyze, evaluate, and identify superior keywords for paid search campaigns. It integrates typical text data cleanup steps, text mining and NLP approaches, and modeling techniques to evaluate the effectiveness of the keywords.

Main Features

The package provides the following capabilities:

  • Ability to load paid search campaign data, including keywords, campaign metadata, and outcome metrics (e.g., clickthrough rates)
  • Application of common text data cleaning techniques, including removal of punctuation and stopwords, tokenization, etc.
  • Application of various text mining and NLP techniques to the keywords to develop a variety of features. These methods include:
  • Topic Modeling
  • Named Entity Recognition
  • Hand Labeling of text features
  • Graph model of text
  • Sentiment Analysis
  • Regression and classification model creation using a baseline model (without text mining) and with text mining to estimate the improvement or “lift” the keyword provides in terms an outcome metric (e.g., CTR)
  • Data visualization to evaluate the most impactful text-based features to aid in the analysis and evaluation of keywords. This includes graph and SHAP.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/mfligiel/Capstone_Text_Mining

The package can installed from the Python Package Index (PyPI):

pip install Capstone_Text_Mining

Getting Started

We recommend sourcing or creating a campaign-level paid search dataset. Each record in the data set should represent a specific campaign and keyword option. Additional level of granularity may be added – e.g., by week, day, channel, etc. In addition to the keyword, each record should have some additional campaign variables to establish a baseline for evaluating the effectiveness of the keyword. The various text mining feature engineering functions may then be applied to the keyword(s) to generate various text-based features for your data set. This data can then be visualized. Models can also be applied to the data to evaluate the effectiveness of the keyword selected.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

capstone_text_mining-0.0.5.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

capstone_text_mining-0.0.5-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file capstone_text_mining-0.0.5.tar.gz.

File metadata

  • Download URL: capstone_text_mining-0.0.5.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.10

File hashes

Hashes for capstone_text_mining-0.0.5.tar.gz
Algorithm Hash digest
SHA256 ec9b67fd8a80b96d06845e497923c1b0de250b36134f4911188a7e6e4b39825d
MD5 46e0973ffcd252327b25a9c125e692b8
BLAKE2b-256 2b4272627dfb27d4994ac9cacf912a98062f1f3bc72a536769a4d898df28604b

See more details on using hashes here.

File details

Details for the file capstone_text_mining-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: capstone_text_mining-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.10

File hashes

Hashes for capstone_text_mining-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 45ecfb7085efc1298cff090391de2dc60dd024ae258b5c4fdb9f54778106af68
MD5 246526cc7c3ab417ffcfc829105d707a
BLAKE2b-256 7d39208fddf11b006e88db85ea9dd1323b1e81ba44a43905aad411548cdad32d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page