Skip to main content

Capstone Text Mining Techniques

Project description

CAPSTONE-TEXT-MINING README

Version 0.0.9

What is it?

The Capstone-Text-Mining is a Python package developed for a graduate analytics program capstone project for a specific client. The client is a data analytics consulting and software-as-a-service provider with its own Machine Learning Operations (MLOps) Platform. The client specializes in paid search and marketing analytics.

The package allows an end user to apply text mining and natural language processing (NLP) techniques to analyze, evaluate, and identify superior keywords for paid search campaigns. It integrates typical text data cleanup steps, text mining and NLP approaches, and modeling techniques to evaluate the effectiveness of the keywords.

Main Features

The package provides the following capabilities:

  • Ability to load paid search campaign data, including keywords, campaign metadata, and outcome metrics (e.g., clickthrough rates)
  • Application of common text data cleaning techniques, including removal of punctuation and stopwords, tokenization, etc.
  • Application of various text mining and NLP techniques to the keywords to develop a variety of features. These methods include:
  • Topic Modeling
  • Named Entity Recognition
  • Hand Labeling of text features
  • Graph model of text
  • Sentiment Analysis
  • Regression and classification model creation using a baseline model (without text mining) and with text mining to estimate the improvement or “lift” the keyword provides in terms an outcome metric (e.g., CTR)
  • Data visualization to evaluate the most impactful text-based features to aid in the analysis and evaluation of keywords. This includes graph and SHAP.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/mfligiel/Capstone_Text_Mining

The package can installed from the Python Package Index (PyPI):

pip install Capstone_Text_Mining

Getting Started

We recommend sourcing or creating a campaign-level paid search dataset. Each record in the data set should represent a specific campaign and keyword option. Additional level of granularity may be added – e.g., by week, day, channel, etc. In addition to the keyword, each record should have some additional campaign variables to establish a baseline for evaluating the effectiveness of the keyword. The various text mining feature engineering functions may then be applied to the keyword(s) to generate various text-based features for your data set. This data can then be visualized. Models can also be applied to the data to evaluate the effectiveness of the keyword selected.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

capstone_text_mining-0.0.9.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

capstone_text_mining-0.0.9-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file capstone_text_mining-0.0.9.tar.gz.

File metadata

  • Download URL: capstone_text_mining-0.0.9.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.10

File hashes

Hashes for capstone_text_mining-0.0.9.tar.gz
Algorithm Hash digest
SHA256 0f5ff73af7008d0ab40bb7e0f43e273f69326f9860bb54241258b9e86d633513
MD5 e918f9b688c6f0c03ae7346c05c6fd33
BLAKE2b-256 2afb2b76b3af3f21b60ffab79bbda09e072b28c590812520e07c295b5c73eabd

See more details on using hashes here.

File details

Details for the file capstone_text_mining-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: capstone_text_mining-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.10

File hashes

Hashes for capstone_text_mining-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 3ec2129ccbdab42e18a0c8c9abcb2646810e017ecb6b39684473d4502862a8ef
MD5 57d456e982fb3fe3c522a7c417d0ed71
BLAKE2b-256 c23c65c8207d2a72a586f60108b2a452da0d1a1835273e4aebc4598a7fcb354e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page