A Python package to capture and reproduce command execution context
Project description
Capsula
Capsula, a Latin word meaning box, is a Python package designed to help researchers and developers easily capture and reproduce their command execution context. The primary aim of Capsula is to tackle the reproducibility problem by providing a way to capture the execution context at any point in time, preserving it for future use. This ensures that you can reproduce the exact conditions of past command execution, fostering reproducibility and consistency over time.
Features:
-
Context Capture: Capsula logs the details of the execution context for future reference and reproduction. The context includes, but is not limited to, the Python version, system environment variables, and the Git commit hash of the current working directory.
-
Execution Monitoring: Capsula monitors the execution of a Python function, logging information such as the execution status, output, duration, etc.
-
Context Diffing (to be implemented): Capsula can compare the current context with the context captured at a previous point in time. This is useful for identifying changes or for reproducing the exact conditions of a past execution.
Usage
Prepare a capsula.toml
file in the root directory of your project. An example of the capsula.toml
file is as follows:
[pre-run]
contexts = [
{ type = "CwdContext" },
{ type = "CpuContext" },
{ type = "GitRepositoryContext", name = "capsula", path = "." },
{ type = "CommandContext", command = "poetry check --lock" },
{ type = "FileContext", path = "pyproject.toml", copy = true },
{ type = "FileContext", path = "poetry.lock", copy = true },
{ type = "CommandContext", command = "pip freeze --exclude-editable > requirements.txt" },
{ type = "FileContext", path = "requirements.txt", move = true },
]
reporters = [{ type = "JsonDumpReporter" }]
[in-run]
watchers = [{ type = "UncaughtExceptionWatcher" }, { type = "TimeWatcher" }]
reporters = [{ type = "JsonDumpReporter" }]
[post-run]
reporters = [{ type = "JsonDumpReporter" }]
Then, all you need to do is decorate your Python function with the @capsula.run()
decorator. You can also use the @capsula.context()
decorator to add a context specific to the function.
The following is an example of a Python script that estimates the value of π using the Monte Carlo method:
import random
import capsula
@capsula.run()
@capsula.context(capsula.FileContext.default("pi.txt", move=True), mode="post")
def calculate_pi(n_samples: int = 1_000, seed: int = 42) -> None:
random.seed(seed)
xs = (random.random() for _ in range(n_samples))
ys = (random.random() for _ in range(n_samples))
inside = sum(x * x + y * y <= 1.0 for x, y in zip(xs, ys))
# You can record values to the capsule using the `record` method.
capsula.record("inside", inside)
pi_estimate = (4.0 * inside) / n_samples
print(f"Pi estimate: {pi_estimate}")
capsula.record("pi_estimate", pi_estimate)
print(f"Run name: {capsula.current_run_name()}")
with open("pi.txt", "w") as output_file:
output_file.write(f"Pi estimate: {pi_estimate}.")
if __name__ == "__main__":
calculate_pi(n_samples=1_000)
Example of output pre-run-report.json
:
{
"cwd": "/home/nomura/ghq/github.com/shunichironomura/capsula",
"cpu": {
"python_version": "3.8.17.final.0 (64 bit)",
"cpuinfo_version": [
9,
0,
0
],
"cpuinfo_version_string": "9.0.0",
"arch": "X86_64",
"bits": 64,
"count": 12,
"arch_string_raw": "x86_64",
"vendor_id_raw": "GenuineIntel",
"brand_raw": "Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz",
"hz_advertised_friendly": "2.9000 GHz",
"hz_actual_friendly": "2.9040 GHz",
"hz_advertised": [
2900000000,
0
],
"hz_actual": [
2904008000,
0
],
"stepping": 5,
"model": 165,
"family": 6,
"flags": [
"3dnowprefetch",
"abm",
"adx",
"aes",
"apic",
"arch_capabilities",
"arch_perfmon",
"avx",
"avx2",
"bmi1",
"bmi2",
"clflush",
"clflushopt",
"cmov",
"constant_tsc",
"cpuid",
"cx16",
"cx8",
"de",
"ept",
"ept_ad",
"erms",
"f16c",
"flush_l1d",
"fma",
"fpu",
"fsgsbase",
"fxsr",
"ht",
"hypervisor",
"ibpb",
"ibrs",
"ibrs_enhanced",
"invpcid",
"invpcid_single",
"lahf_lm",
"lm",
"mca",
"mce",
"md_clear",
"mmx",
"movbe",
"msr",
"mtrr",
"nopl",
"nx",
"osxsave",
"pae",
"pat",
"pcid",
"pclmulqdq",
"pdcm",
"pdpe1gb",
"pge",
"pni",
"popcnt",
"pse",
"pse36",
"rdrand",
"rdrnd",
"rdseed",
"rdtscp",
"rep_good",
"sep",
"smap",
"smep",
"ss",
"ssbd",
"sse",
"sse2",
"sse4_1",
"sse4_2",
"ssse3",
"stibp",
"syscall",
"tpr_shadow",
"tsc",
"vme",
"vmx",
"vnmi",
"vpid",
"x2apic",
"xgetbv1",
"xsave",
"xsavec",
"xsaveopt",
"xsaves",
"xtopology"
],
"l3_cache_size": 12582912,
"l2_cache_size": "1.5 MiB",
"l1_data_cache_size": 196608,
"l1_instruction_cache_size": 196608,
"l2_cache_line_size": 256,
"l2_cache_associativity": 6
},
"git": {
"capsula": {
"working_dir": "/home/nomura/ghq/github.com/shunichironomura/capsula",
"sha": "db7b86d3ed95e178521cd140505f1c8b25f4f30e",
"remotes": {
"origin": "ssh://git@github.com/shunichironomura/capsula.git"
},
"branch": "update-readme",
"is_dirty": false
}
},
"command": {
"poetry check --lock": {
"command": "poetry check --lock",
"cwd": null,
"returncode": 0,
"stdout": "All set!\n",
"stderr": ""
},
"pip freeze --exclude-editable > requirements.txt": {
"command": "pip freeze --exclude-editable > requirements.txt",
"cwd": null,
"returncode": 0,
"stdout": "",
"stderr": ""
}
},
"file": {
"pyproject.toml": {
"copied_to": [
"vault/calculate_pi_20240630_015823_S3vb/pyproject.toml"
],
"moved_to": null,
"hash": {
"algorithm": "sha256",
"digest": "9b2ccc978e950a3a4d2b5f3d29eadab593e1ffe8cd48e7606389e214cb82c8a6"
}
},
"poetry.lock": {
"copied_to": [
"vault/calculate_pi_20240630_015823_S3vb/poetry.lock"
],
"moved_to": null,
"hash": {
"algorithm": "sha256",
"digest": "8d89f9943c8e515340a5c8c16b17a30a749d935ffe765024acaaa81fc1ed5587"
}
},
"requirements.txt": {
"copied_to": [],
"moved_to": "vault/calculate_pi_20240630_015823_S3vb",
"hash": {
"algorithm": "sha256",
"digest": "b7a36d48fda3efc9374d7d8b0fd4d910234497e2cf229001a1c2c76fce35810c"
}
}
}
}
Example of output in-run-report.json
:
{
"function": {
"calculate_pi": {
"file_path": "examples/simple_decorator.py",
"first_line_no": 6,
"args": [],
"kwargs": {
"n_samples": 1000
}
}
},
"inside": 782,
"pi_estimate": 3.128,
"time": {
"execution_time": "0:00:00.000568"
},
"exception": {
"exception": {
"exc_type": null,
"exc_value": null,
"traceback": null
}
}
}
Example of output post-run-report.json
:
{
"file": {
"pi.txt": {
"copied_to": [],
"moved_to": "vault/calculate_pi_20240630_015823_S3vb",
"hash": {
"algorithm": "sha256",
"digest": "a64c761cb6b6f9ef1bc1f6afa6ba44d796c5c51d14df0bdc9d3ab9ced7982a74"
}
}
}
}
Installation
You can install Capsula via pip:
pip install capsula
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.