Skip to main content

Capt’n client

Project description

Capt’n python client 2022.3.0

Docs

Full documentation can be found at the following link:

How to install

If you don't have the captn library already installed, please install it using pip.

pip install captn-client

How to use

To access the captn service, you must create a developer account. Please fill out the signup form below to get one:

Upon successful verification, you will receive the username/password for the developer account in an email.

Finally, you need an application token to access all the APIs in captn service. Please call the Client.get_token method with the username/password to get one.

You can either pass the username, password, and server address as parameters to the Client.get_token method or store the same in the CAPTN_SERVICE_USERNAME, CAPTN_SERVICE_PASSWORD, and CAPTN_SERVER_URL environment variables.

After successful authentication, the captn services will be available to access.

For more information, please check:

  • Tutorial with more elaborate example, and

  • API with reference documentation.

Below is a minimal example explaining how to load the data, train a model and make predictions using captn services.

!!! info

In the below example, the username, password, and server address are stored in **CAPTN_SERVICE_USERNAME**, **CAPTN_SERVICE_PASSWORD**, and **CAPTN_SERVER_URL** environment variables.

0. Get token

import json
from captn.client import Client, DataBlob, DataSource

Client.get_token()

1. Connect and preprocess data

In our example, we will be using the captn APIs to load and preprocess a sample CSV file stored in an AWS S3 bucket.

data_blob = DataBlob.from_s3(
    uri="s3://test-airt-service/sample_gaming_130k/"
)
data_blob.progress_bar()

100%|██████████| 1/1 [01:35<00:00, 95.72s/it]

The sample data we used in this example doesn't have the header rows and their data types defined.

The following code creates the necessary headers along with their data types and reads only a subset of columns that are required for modeling:

prefix = ["revenue", "ad_revenue", "conversion", "retention"]
days = list(range(30)) + list(range(30, 361, 30))
dtype = {
    "date": "str",
    "game_name": "str",
    "platform": "str",
    "user_type": "str",
    "network": "str",
    "campaign": "str",
    "adgroup": "str",
    "installs": "int32",
    "spend": "float32",
}
dtype.update({f"{p}_{d}": "float32" for p in prefix for d in days})
names = list(dtype.keys())

kwargs = {"delimiter": "|", "names": names, "parse_dates": ["date"], "usecols": names[:42], "dtype": dtype}

Finally, the above variables are passed to the DataBlob.from_csv method which preprocesses the data and stores it in captn server.

data_source = data_blob.from_csv(
    index_column="game_name",
    sort_by="date",
    kwargs_json=json.dumps(kwargs)
)

data_source.progress_bar()
100%|██████████| 1/1 [00:45<00:00, 45.39s/it]
data_source.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
date platform user_type network campaign adgroup installs spend revenue_0 revenue_1 ... revenue_23 revenue_24 revenue_25 revenue_26 revenue_27 revenue_28 revenue_29 revenue_30 revenue_60 revenue_90
0 2021-03-15 ios jetfuelit_int jetfuelit_int campaign_0 adgroup_541 1 0.600000 0.000000 0.018173 ... 0.018173 0.018173 0.018173 0.018173 0.018173 0.018173 0.018173 0.018173 0.018173 0.018173
1 2021-03-15 ios jetfuelit_int jetfuelit_int campaign_0 adgroup_2351 2 4.900000 0.000000 0.034000 ... 0.034000 6.034000 6.034000 6.034000 6.034000 6.034000 6.034000 6.034000 6.034000 13.030497
2 2021-03-15 ios jetfuelit_int jetfuelit_int campaign_0 adgroup_636 3 7.350000 0.000000 0.000000 ... 12.112897 12.112897 12.112897 12.112897 12.112897 12.112897 12.112897 12.112897 12.112897 12.112897
3 2021-03-15 ios jetfuelit_int jetfuelit_int campaign_0 adgroup_569 1 0.750000 0.000000 0.029673 ... 0.029673 0.029673 0.029673 0.029673 0.029673 0.029673 0.029673 0.029673 0.029673 0.029673
4 2021-03-15 ios jetfuelit_int jetfuelit_int campaign_0 adgroup_243 2 3.440000 0.000000 0.027981 ... 0.042155 0.042155 0.042155 0.042155 0.042155 0.042155 0.042155 0.042155 0.042155 0.042155
5 2021-03-15 android googleadwords_int googleadwords_int campaign_283 adgroup_1685 11 0.000000 0.000000 0.097342 ... 0.139581 0.139581 0.139581 0.139581 0.139581 0.139581 0.139581 0.139581 0.139581 0.139581
6 2021-03-15 android googleadwords_int googleadwords_int campaign_2 adgroup_56 32 30.090000 0.000000 0.802349 ... 2.548253 2.548253 2.771138 2.805776 2.805776 2.805776 2.805776 2.805776 2.805776 2.805776
7 2021-03-15 android moloco_int moloco_int campaign_191 None 291 503.480011 34.701553 63.618111 ... 116.508331 117.334709 117.387489 117.509506 118.811417 118.760765 119.151291 119.350220 139.069443 147.528793
8 2021-03-15 android jetfuelit_int jetfuelit_int campaign_0 adgroup_190 4 2.740000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
9 2021-03-15 android jetfuelit_int jetfuelit_int campaign_0 adgroup_755 8 11.300000 13.976003 14.358793 ... 14.338905 14.338905 14.338905 14.338905 14.338905 14.338905 14.338905 14.338905 14.338905 14.338905

10 rows × 41 columns

2. Training

# Todo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

captn-client-2022.3.0.tar.gz (18.9 kB view hashes)

Uploaded Source

Built Distribution

captn_client-2022.3.0-py3-none-any.whl (17.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page