Client for Carbon
Project description
Table of Contents
- Requirements
- Installation
- Getting Started
- Async
- Raw HTTP Response
- Reference
carbon.auth.get_access_token
carbon.auth.get_white_labeling
carbon.crm.get_account
carbon.crm.get_accounts
carbon.crm.get_contact
carbon.crm.get_contacts
carbon.crm.get_lead
carbon.crm.get_leads
carbon.crm.get_opportunities
carbon.crm.get_opportunity
carbon.data_sources.query_user_data_sources
carbon.data_sources.revoke_access_token
carbon.embeddings.get_documents
carbon.embeddings.get_embeddings_and_chunks
carbon.embeddings.list
carbon.embeddings.upload_chunks_and_embeddings
carbon.files.create_user_file_tags
carbon.files.delete
carbon.files.delete_file_tags
carbon.files.delete_many
carbon.files.delete_v2
carbon.files.get_parsed_file
carbon.files.get_raw_file
carbon.files.modify_cold_storage_parameters
carbon.files.move_to_hot_storage
carbon.files.query_user_files
carbon.files.query_user_files_deprecated
carbon.files.resync
carbon.files.upload
carbon.files.upload_from_url
carbon.files.upload_text
carbon.integrations.cancel
carbon.integrations.connect_data_source
carbon.integrations.connect_freshdesk
carbon.integrations.connect_gitbook
carbon.integrations.connect_guru
carbon.integrations.create_aws_iam_user
carbon.integrations.get_oauth_url
carbon.integrations.list_confluence_pages
carbon.integrations.list_conversations
carbon.integrations.list_data_source_items
carbon.integrations.list_folders
carbon.integrations.list_gitbook_spaces
carbon.integrations.list_labels
carbon.integrations.list_outlook_categories
carbon.integrations.list_repos
carbon.integrations.sync_azure_blob_files
carbon.integrations.sync_azure_blob_storage
carbon.integrations.sync_confluence
carbon.integrations.sync_data_source_items
carbon.integrations.sync_files
carbon.integrations.sync_git_hub
carbon.integrations.sync_gitbook
carbon.integrations.sync_gmail
carbon.integrations.sync_outlook
carbon.integrations.sync_repos
carbon.integrations.sync_rss_feed
carbon.integrations.sync_s3_files
carbon.integrations.sync_slack
carbon.organizations.get
carbon.organizations.update
carbon.organizations.update_stats
carbon.users.delete
carbon.users.get
carbon.users.list
carbon.users.toggle_user_features
carbon.users.update_users
carbon.utilities.fetch_urls
carbon.utilities.fetch_webpage
carbon.utilities.fetch_youtube_transcripts
carbon.utilities.process_sitemap
carbon.utilities.scrape_sitemap
carbon.utilities.scrape_web
carbon.utilities.search_urls
carbon.utilities.user_webpages
carbon.webhooks.add_url
carbon.webhooks.delete_url
carbon.webhooks.urls
Requirements
Python >=3.7
Installation
pip install carbon-python-sdk==0.2.40
Getting Started
from carbon import Carbon
# 1) Get an access token for a customer
carbon = Carbon(
api_key="YOUR_API_KEY",
customer_id="YOUR_CUSTOMER_ID",
)
token = carbon.auth.get_access_token()
# 2) Use the access token to authenticate moving forward
carbon = Carbon(access_token=token.access_token)
# use SDK as usual
white_labeling = carbon.auth.get_white_labeling()
# etc.
Async
async
support is available by prepending a
to any method.
import asyncio
from pprint import pprint
from carbon import Carbon, ApiException
carbon = Carbon(
access_token="YOUR_API_KEY",
api_key="YOUR_API_KEY",
customer_id="YOUR_API_KEY",
)
async def main():
try:
# Get Access Token
get_access_token_response = await carbon.auth.aget_access_token()
print(get_access_token_response)
except ApiException as e:
print("Exception when calling AuthApi.get_access_token: %s\n" % e)
pprint(e.body)
if e.status == 422:
pprint(e.body["detail"])
pprint(e.headers)
pprint(e.status)
pprint(e.reason)
pprint(e.round_trip_time)
asyncio.run(main())
Raw HTTP Response
To access raw HTTP response values, use the .raw
namespace.
from pprint import pprint
from carbon import Carbon, ApiException
carbon = Carbon(
access_token="YOUR_API_KEY",
api_key="YOUR_API_KEY",
customer_id="YOUR_API_KEY",
)
try:
# Get Access Token
get_access_token_response = carbon.auth.raw.get_access_token()
pprint(get_access_token_response.body)
pprint(get_access_token_response.body["access_token"])
pprint(get_access_token_response.body["refresh_token"])
pprint(get_access_token_response.headers)
pprint(get_access_token_response.status)
pprint(get_access_token_response.round_trip_time)
except ApiException as e:
print("Exception when calling AuthApi.get_access_token: %s\n" % e)
pprint(e.body)
if e.status == 422:
pprint(e.body["detail"])
pprint(e.headers)
pprint(e.status)
pprint(e.reason)
pprint(e.round_trip_time)
Reference
carbon.auth.get_access_token
Get Access Token
๐ ๏ธ Usage
get_access_token_response = carbon.auth.get_access_token()
๐ Return
๐ Endpoint
/auth/v1/access_token
get
๐ Back to Table of Contents
carbon.auth.get_white_labeling
Returns whether or not the organization is white labeled and which integrations are white labeled
:param current_user: the current user :param db: the database session :return: a WhiteLabelingResponse
๐ ๏ธ Usage
get_white_labeling_response = carbon.auth.get_white_labeling()
๐ Return
๐ Endpoint
/auth/v1/white_labeling
get
๐ Back to Table of Contents
carbon.crm.get_account
Get Account
๐ ๏ธ Usage
get_account_response = carbon.crm.get_account(
id="id_example",
data_source_id=1,
include_remote_data=False,
includes=["string_example"],
)
โ๏ธ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes
]
๐ Return
๐ Endpoint
/integrations/data/crm/accounts/{id}
get
๐ Back to Table of Contents
carbon.crm.get_accounts
Get Accounts
๐ ๏ธ Usage
get_accounts_response = carbon.crm.get_accounts(
data_source_id=1,
include_remote_data=False,
next_cursor="string_example",
page_size=1,
order_dir="asc",
includes=[],
filters={},
order_by="created_at",
)
โ๏ธ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes
]
filters: AccountFilters
order_by: AccountsOrderByNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/data/crm/accounts
post
๐ Back to Table of Contents
carbon.crm.get_contact
Get Contact
๐ ๏ธ Usage
get_contact_response = carbon.crm.get_contact(
id="id_example",
data_source_id=1,
include_remote_data=False,
includes=["string_example"],
)
โ๏ธ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes
]
๐ Return
๐ Endpoint
/integrations/data/crm/contacts/{id}
get
๐ Back to Table of Contents
carbon.crm.get_contacts
Get Contacts
๐ ๏ธ Usage
get_contacts_response = carbon.crm.get_contacts(
data_source_id=1,
include_remote_data=False,
next_cursor="string_example",
page_size=1,
order_dir="asc",
includes=[],
filters={},
order_by="created_at",
)
โ๏ธ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes
]
filters: ContactFilters
order_by: ContactsOrderByNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/data/crm/contacts
post
๐ Back to Table of Contents
carbon.crm.get_lead
Get Lead
๐ ๏ธ Usage
get_lead_response = carbon.crm.get_lead(
id="id_example",
data_source_id=1,
include_remote_data=False,
includes=["string_example"],
)
โ๏ธ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes
]
๐ Return
๐ Endpoint
/integrations/data/crm/leads/{id}
get
๐ Back to Table of Contents
carbon.crm.get_leads
Get Leads
๐ ๏ธ Usage
get_leads_response = carbon.crm.get_leads(
data_source_id=1,
include_remote_data=False,
next_cursor="string_example",
page_size=1,
order_dir="asc",
includes=[],
filters={},
order_by="created_at",
)
โ๏ธ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes
]
filters: LeadFilters
order_by: LeadsOrderByNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/data/crm/leads
post
๐ Back to Table of Contents
carbon.crm.get_opportunities
Get Opportunities
๐ ๏ธ Usage
get_opportunities_response = carbon.crm.get_opportunities(
data_source_id=1,
include_remote_data=False,
next_cursor="string_example",
page_size=1,
order_dir="asc",
includes=[],
filters={
"status": "WON",
},
order_by="created_at",
)
โ๏ธ Parameters
data_source_id: int
include_remote_data: bool
next_cursor: Optional[str]
page_size: Optional[int]
order_dir: OrderDirV2Nullable
includes: List[BaseIncludes
]
filters: OpportunityFilters
order_by: OpportunitiesOrderByNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/data/crm/opportunities
post
๐ Back to Table of Contents
carbon.crm.get_opportunity
Get Opportunity
๐ ๏ธ Usage
get_opportunity_response = carbon.crm.get_opportunity(
id="id_example",
data_source_id=1,
include_remote_data=False,
includes=["string_example"],
)
โ๏ธ Parameters
id: str
data_source_id: int
include_remote_data: bool
includes: List[BaseIncludes
]
๐ Return
๐ Endpoint
/integrations/data/crm/opportunities/{id}
get
๐ Back to Table of Contents
carbon.data_sources.query_user_data_sources
User Data Sources
๐ ๏ธ Usage
query_user_data_sources_response = carbon.data_sources.query_user_data_sources(
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="desc",
filters={
"source": "GOOGLE_CLOUD_STORAGE",
},
)
โ๏ธ Parameters
pagination: Pagination
order_by: OrganizationUserDataSourceOrderByColumns
order_dir: OrderDir
filters: OrganizationUserDataSourceFilters
โ๏ธ Request Body
OrganizationUserDataSourceQueryInput
๐ Return
OrganizationUserDataSourceResponse
๐ Endpoint
/user_data_sources
post
๐ Back to Table of Contents
carbon.data_sources.revoke_access_token
Revoke Access Token
๐ ๏ธ Usage
revoke_access_token_response = carbon.data_sources.revoke_access_token(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: int
โ๏ธ Request Body
๐ Return
๐ Endpoint
/revoke_access_token
post
๐ Back to Table of Contents
carbon.embeddings.get_documents
For pre-filtering documents, using tags_v2
is preferred to using tags
(which is now deprecated). If both tags_v2
and tags
are specified, tags
is ignored. tags_v2
enables
building complex filters through the use of "AND", "OR", and negation logic. Take the below input as an example:
{
"OR": [
{
"key": "subject",
"value": "holy-bible",
"negate": false
},
{
"key": "person-of-interest",
"value": "jesus christ",
"negate": false
},
{
"key": "genre",
"value": "religion",
"negate": true
}
{
"AND": [
{
"key": "subject",
"value": "tao-te-ching",
"negate": false
},
{
"key": "author",
"value": "lao-tzu",
"negate": false
}
]
}
]
}
In this case, files will be filtered such that:
- "subject" = "holy-bible" OR
- "person-of-interest" = "jesus christ" OR
- "genre" != "religion" OR
- "subject" = "tao-te-ching" AND "author" = "lao-tzu"
Note that the top level of the query must be either an "OR" or "AND" array. Currently, nesting is limited to 3. For tag blocks (those with "key", "value", and "negate" keys), the following typing rules apply:
- "key" isn't optional and must be a
string
- "value" isn't optional and can be
any
or list[any
] - "negate" is optional and must be
true
orfalse
. If present andtrue
, then the filter block is negated in the resulting query. It isfalse
by default.
When querying embeddings, you can optionally specify the media_type
parameter in your request. By default (if
not set), it is equal to "TEXT". This means that the query will be performed over files that have
been parsed as text (for now, this covers all files except image files). If it is equal to "IMAGE",
the query will be performed over image files (for now, .jpg
and .png
files). You can think of this
field as an additional filter on top of any filters set in file_ids
and
When hybrid_search
is set to true, a combination of keyword search and semantic search are used to rank
and select candidate embeddings during information retrieval. By default, these search methods are weighted
equally during the ranking process. To adjust the weight (or "importance") of each search method, you can use
the hybrid_search_tuning_parameters
property. The description for the different tuning parameters are:
weight_a
: weight to assign to semantic searchweight_b
: weight to assign to keyword search
You must ensure that sum(weight_a, weight_b,..., weight_n)
for all n weights is equal to 1. The equality
has an error tolerance of 0.001 to account for possible floating point issues.
In order to use hybrid search for a customer across a set of documents, two flags need to be enabled:
- Use the
/modify_user_configuration
endpoint to to enablesparse_vectors
for the customer. The payload body for this request is below:
{
"configuration_key_name": "sparse_vectors",
"value": {
"enabled": true
}
}
- Make sure hybrid search is enabled for the documents across which you want to perform the search. For the
/uploadfile
endpoint, this can be done by setting the following query parameter:generate_sparse_vectors=true
Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's
multimodal model; for text, we support OpenAI's text-embedding-ada-002
and Cohere's embed-multilingual-v3.0.
The model can be specified via the embedding_model
parameter (in the POST body for /embeddings
, and a query
parameter in /uploadfile
). If no model is supplied, the text-embedding-ada-002
is used by default. When performing
embedding queries, embeddings from files that used the specified model will be considered in the query.
For example, if files A and B have embeddings generated with OPENAI
, and files C and D have embeddings generated with
COHERE_MULTILINGUAL_V3
, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3
is
specified as the embedding_model
in /embeddings
, then only files C and D will be considered. Make sure that
the set of all files you want considered for a query have embeddings generated via the same model. For now, do not
set VERTEX_MULTIMODAL
as an embedding_model
. This model is used automatically by Carbon when it detects an image file.
๐ ๏ธ Usage
get_documents_response = carbon.embeddings.get_documents(
query="a",
k=1,
tags={
"key": "string_example",
},
query_vector=[3.14],
file_ids=[1],
parent_file_ids=[1],
include_all_children=False,
tags_v2={},
include_tags=True,
include_vectors=True,
include_raw_file=True,
hybrid_search=True,
hybrid_search_tuning_parameters={
"weight_a": 0.5,
"weight_b": 0.5,
},
media_type="TEXT",
embedding_model="OPENAI",
include_file_level_metadata=False,
high_accuracy=False,
rerank={
"model": "model_example",
},
file_types_at_source=["string_example"],
exclude_cold_storage_files=False,
)
โ๏ธ Parameters
query: str
Query for which to get related chunks and embeddings.
k: int
Number of related chunks to return.
tags: GetEmbeddingDocumentsBodyTags
query_vector: GetEmbeddingDocumentsBodyQueryVector
file_ids: GetEmbeddingDocumentsBodyFileIds
parent_file_ids: GetEmbeddingDocumentsBodyParentFileIds
include_all_children: bool
Flag to control whether or not to include all children of filtered files in the embedding search.
tags_v2: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
A set of tags to limit the search to. Use this instead of tags
, which is deprecated.
include_tags: Optional[bool]
Flag to control whether or not to include tags for each chunk in the response.
include_vectors: Optional[bool]
Flag to control whether or not to include embedding vectors in the response.
include_raw_file: Optional[bool]
Flag to control whether or not to include a signed URL to the raw file containing each chunk in the response.
hybrid_search: Optional[bool]
Flag to control whether or not to perform hybrid search.
hybrid_search_tuning_parameters: HybridSearchTuningParamsNullable
media_type: FileContentTypesNullable
embedding_model: EmbeddingGeneratorsNullable
include_file_level_metadata: Optional[bool]
Flag to control whether or not to include file-level metadata in the response. This metadata will be included in the content_metadata
field of each document along with chunk/embedding level metadata.
high_accuracy: Optional[bool]
Flag to control whether or not to perform a high accuracy embedding search. By default, this is set to false. If true, the search may return more accurate results, but may take longer to complete.
rerank: RerankParamsNullable
file_types_at_source: GetEmbeddingDocumentsBodyFileTypesAtSource
exclude_cold_storage_files: bool
Flag to control whether or not to exclude files that are not in hot storage. If set to False, then an error will be returned if any filtered files are in cold storage.
โ๏ธ Request Body
๐ Return
๐ Endpoint
/embeddings
post
๐ Back to Table of Contents
carbon.embeddings.get_embeddings_and_chunks
Retrieve Embeddings And Content
๐ ๏ธ Usage
get_embeddings_and_chunks_response = carbon.embeddings.get_embeddings_and_chunks(
filters={
"user_file_id": 1,
"embedding_model": "OPENAI",
},
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="desc",
include_vectors=False,
)
โ๏ธ Parameters
filters: EmbeddingsAndChunksFilters
pagination: Pagination
order_by: EmbeddingsAndChunksOrderByColumns
order_dir: OrderDir
include_vectors: bool
โ๏ธ Request Body
๐ Return
๐ Endpoint
/text_chunks
post
๐ Back to Table of Contents
carbon.embeddings.list
Retrieve Embeddings And Content V2
๐ ๏ธ Usage
list_response = carbon.embeddings.list(
filters={
"include_all_children": False,
"non_synced_only": False,
},
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="desc",
include_vectors=False,
)
โ๏ธ Parameters
filters: OrganizationUserFilesToSyncFilters
pagination: Pagination
order_by: OrganizationUserFilesToSyncOrderByTypes
order_dir: OrderDir
include_vectors: bool
โ๏ธ Request Body
EmbeddingsAndChunksQueryInputV2
๐ Return
๐ Endpoint
/list_chunks_and_embeddings
post
๐ Back to Table of Contents
carbon.embeddings.upload_chunks_and_embeddings
Upload Chunks And Embeddings
๐ ๏ธ Usage
upload_chunks_and_embeddings_response = carbon.embeddings.upload_chunks_and_embeddings(
embedding_model="OPENAI",
chunks_and_embeddings=[
{
"file_id": 1,
"chunks_and_embeddings": [
{
"chunk_number": 1,
"chunk": "chunk_example",
}
],
}
],
overwrite_existing=False,
chunks_only=False,
custom_credentials={
"key": {},
},
)
โ๏ธ Parameters
embedding_model: EmbeddingGenerators
chunks_and_embeddings: List[SingleChunksAndEmbeddingsUploadInput
]
overwrite_existing: bool
chunks_only: bool
custom_credentials: ChunksAndEmbeddingsUploadInputCustomCredentials
โ๏ธ Request Body
ChunksAndEmbeddingsUploadInput
๐ Return
๐ Endpoint
/upload_chunks_and_embeddings
post
๐ Back to Table of Contents
carbon.files.create_user_file_tags
A tag is a key-value pair that can be added to a file. This pair can then be used for searches (e.g. embedding searches) in order to narrow down the scope of the search. A file can have any number of tags. The following are reserved keys that cannot be used:
- db_embedding_id
- organization_id
- user_id
- organization_user_file_id
Carbon currently supports two data types for tag values - string
and list<string>
.
Keys can only be string
. If values other than string
and list<string>
are used,
they're automatically converted to strings (e.g. 4 will become "4").
๐ ๏ธ Usage
create_user_file_tags_response = carbon.files.create_user_file_tags(
tags={
"key": "string_example",
},
organization_user_file_id=1,
)
โ๏ธ Parameters
tags: OrganizationUserFileTagCreateTags
organization_user_file_id: int
โ๏ธ Request Body
๐ Return
๐ Endpoint
/create_user_file_tags
post
๐ Back to Table of Contents
carbon.files.delete
Delete File Endpoint
๐ ๏ธ Usage
delete_response = carbon.files.delete(
file_id=1,
)
โ๏ธ Parameters
file_id: int
๐ Return
๐ Endpoint
/deletefile/{file_id}
delete
๐ Back to Table of Contents
carbon.files.delete_file_tags
Delete File Tags
๐ ๏ธ Usage
delete_file_tags_response = carbon.files.delete_file_tags(
tags=["string_example"],
organization_user_file_id=1,
)
โ๏ธ Parameters
tags: OrganizationUserFileTagsRemoveTags
organization_user_file_id: int
โ๏ธ Request Body
OrganizationUserFileTagsRemove
๐ Return
๐ Endpoint
/delete_user_file_tags
post
๐ Back to Table of Contents
carbon.files.delete_many
Delete Files Endpoint
๐ ๏ธ Usage
delete_many_response = carbon.files.delete_many(
file_ids=[1],
sync_statuses=["string_example"],
delete_non_synced_only=False,
send_webhook=False,
delete_child_files=False,
)
โ๏ธ Parameters
file_ids: DeleteFilesQueryInputFileIds
sync_statuses: List[ExternalFileSyncStatuses
]
delete_non_synced_only: bool
send_webhook: bool
delete_child_files: bool
โ๏ธ Request Body
๐ Return
๐ Endpoint
/delete_files
post
๐ Back to Table of Contents
carbon.files.delete_v2
Delete Files V2 Endpoint
๐ ๏ธ Usage
delete_v2_response = carbon.files.delete_v2(
filters={
"include_all_children": False,
"non_synced_only": False,
},
send_webhook=False,
preserve_file_record=False,
)
โ๏ธ Parameters
filters: OrganizationUserFilesToSyncFilters
send_webhook: bool
preserve_file_record: bool
Whether or not to delete all data related to the file from the database, BUT to preserve the file metadata, allowing for resyncs. By default preserve_file_record
is false, which means that all data related to the file as well as its metadata will be deleted. Note that even if preserve_file_record
is true, raw files uploaded via the uploadfile
endpoint still cannot be resynced.
โ๏ธ Request Body
๐ Return
๐ Endpoint
/delete_files_v2
post
๐ Back to Table of Contents
carbon.files.get_parsed_file
This route is deprecated. Use /user_files_v2
instead.
๐ ๏ธ Usage
get_parsed_file_response = carbon.files.get_parsed_file(
file_id=1,
)
โ๏ธ Parameters
file_id: int
๐ Return
๐ Endpoint
/parsed_file/{file_id}
get
๐ Back to Table of Contents
carbon.files.get_raw_file
This route is deprecated. Use /user_files_v2
instead.
๐ ๏ธ Usage
get_raw_file_response = carbon.files.get_raw_file(
file_id=1,
)
โ๏ธ Parameters
file_id: int
๐ Return
๐ Endpoint
/raw_file/{file_id}
get
๐ Back to Table of Contents
carbon.files.modify_cold_storage_parameters
Modify Cold Storage Parameters
๐ ๏ธ Usage
modify_cold_storage_parameters_response = carbon.files.modify_cold_storage_parameters(
filters={
"include_all_children": False,
"non_synced_only": False,
},
enable_cold_storage=True,
hot_storage_time_to_live=1,
)
โ๏ธ Parameters
filters: OrganizationUserFilesToSyncFilters
enable_cold_storage: Optional[bool]
hot_storage_time_to_live: Optional[int]
โ๏ธ Request Body
ModifyColdStorageParametersQueryInput
๐ Endpoint
/modify_cold_storage_parameters
post
๐ Back to Table of Contents
carbon.files.move_to_hot_storage
Move To Hot Storage
๐ ๏ธ Usage
move_to_hot_storage_response = carbon.files.move_to_hot_storage(
filters={
"include_all_children": False,
"non_synced_only": False,
},
)
โ๏ธ Parameters
filters: OrganizationUserFilesToSyncFilters
โ๏ธ Request Body
๐ Endpoint
/move_to_hot_storage
post
๐ Back to Table of Contents
carbon.files.query_user_files
For pre-filtering documents, using tags_v2
is preferred to using tags
(which is now deprecated). If both tags_v2
and tags
are specified, tags
is ignored. tags_v2
enables
building complex filters through the use of "AND", "OR", and negation logic. Take the below input as an example:
{
"OR": [
{
"key": "subject",
"value": "holy-bible",
"negate": false
},
{
"key": "person-of-interest",
"value": "jesus christ",
"negate": false
},
{
"key": "genre",
"value": "religion",
"negate": true
}
{
"AND": [
{
"key": "subject",
"value": "tao-te-ching",
"negate": false
},
{
"key": "author",
"value": "lao-tzu",
"negate": false
}
]
}
]
}
In this case, files will be filtered such that:
- "subject" = "holy-bible" OR
- "person-of-interest" = "jesus christ" OR
- "genre" != "religion" OR
- "subject" = "tao-te-ching" AND "author" = "lao-tzu"
Note that the top level of the query must be either an "OR" or "AND" array. Currently, nesting is limited to 3. For tag blocks (those with "key", "value", and "negate" keys), the following typing rules apply:
- "key" isn't optional and must be a
string
- "value" isn't optional and can be
any
or list[any
] - "negate" is optional and must be
true
orfalse
. If present andtrue
, then the filter block is negated in the resulting query. It isfalse
by default.
๐ ๏ธ Usage
query_user_files_response = carbon.files.query_user_files(
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="desc",
filters={
"include_all_children": False,
"non_synced_only": False,
},
include_raw_file=True,
include_parsed_text_file=True,
include_additional_files=True,
)
โ๏ธ Parameters
pagination: Pagination
order_by: OrganizationUserFilesToSyncOrderByTypes
order_dir: OrderDir
filters: OrganizationUserFilesToSyncFilters
include_raw_file: Optional[bool]
include_parsed_text_file: Optional[bool]
include_additional_files: Optional[bool]
โ๏ธ Request Body
OrganizationUserFilesToSyncQueryInput
๐ Return
๐ Endpoint
/user_files_v2
post
๐ Back to Table of Contents
carbon.files.query_user_files_deprecated
This route is deprecated. Use /user_files_v2
instead.
๐ ๏ธ Usage
query_user_files_deprecated_response = carbon.files.query_user_files_deprecated(
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="desc",
filters={
"include_all_children": False,
"non_synced_only": False,
},
include_raw_file=True,
include_parsed_text_file=True,
include_additional_files=True,
)
โ๏ธ Parameters
pagination: Pagination
order_by: OrganizationUserFilesToSyncOrderByTypes
order_dir: OrderDir
filters: OrganizationUserFilesToSyncFilters
include_raw_file: Optional[bool]
include_parsed_text_file: Optional[bool]
include_additional_files: Optional[bool]
โ๏ธ Request Body
OrganizationUserFilesToSyncQueryInput
๐ Return
FilesQueryUserFilesDeprecatedResponse
๐ Endpoint
/user_files
post
๐ Back to Table of Contents
carbon.files.resync
Resync File
๐ ๏ธ Usage
resync_response = carbon.files.resync(
file_id=1,
chunk_size=1,
chunk_overlap=1,
force_embedding_generation=False,
skip_file_processing=False,
)
โ๏ธ Parameters
file_id: int
chunk_size: Optional[int]
chunk_overlap: Optional[int]
force_embedding_generation: bool
skip_file_processing: Optional[bool]
โ๏ธ Request Body
๐ Return
๐ Endpoint
/resync_file
post
๐ Back to Table of Contents
carbon.files.upload
This endpoint is used to directly upload local files to Carbon. The POST
request should be a multipart form request.
Note that the set_page_as_boundary
query parameter is applicable only to PDFs for now. When this value is set,
PDF chunks are at most one page long. Additional information can be retrieved for each chunk, however, namely the coordinates
of the bounding box around the chunk (this can be used for things like text highlighting). Following is a description
of all possible query parameters:
chunk_size
: the chunk size (in tokens) applied when splitting the documentchunk_overlap
: the chunk overlap (in tokens) applied when splitting the documentskip_embedding_generation
: whether or not to skip the generation of chunks and embeddingsset_page_as_boundary
: described aboveembedding_model
: the model used to generate embeddings for the document chunksuse_ocr
: whether or not to use OCR as a preprocessing step prior to generating chunks. Valid for PDFs, JPEGs, and PNGsgenerate_sparse_vectors
: whether or not to generate sparse vectors for the file. Required for hybrid search.prepend_filename_to_chunks
: whether or not to prepend the filename to the chunk text
Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's
multimodal model; for text, we support OpenAI's text-embedding-ada-002
and Cohere's embed-multilingual-v3.0.
The model can be specified via the embedding_model
parameter (in the POST body for /embeddings
, and a query
parameter in /uploadfile
). If no model is supplied, the text-embedding-ada-002
is used by default. When performing
embedding queries, embeddings from files that used the specified model will be considered in the query.
For example, if files A and B have embeddings generated with OPENAI
, and files C and D have embeddings generated with
COHERE_MULTILINGUAL_V3
, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3
is
specified as the embedding_model
in /embeddings
, then only files C and D will be considered. Make sure that
the set of all files you want considered for a query have embeddings generated via the same model. For now, do not
set VERTEX_MULTIMODAL
as an embedding_model
. This model is used automatically by Carbon when it detects an image file.
๐ ๏ธ Usage
upload_response = carbon.files.upload(
file=open("/path/to/file", "rb"),
chunk_size=1,
chunk_overlap=1,
skip_embedding_generation=False,
set_page_as_boundary=False,
embedding_model="string_example",
use_ocr=False,
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
parse_pdf_tables_with_ocr=False,
detect_audio_language=False,
transcription_service="assemblyai",
include_speaker_labels=False,
media_type="TEXT",
split_rows=False,
enable_cold_storage=False,
hot_storage_time_to_live=1,
generate_chunks_only=False,
store_file_only=False,
)
โ๏ธ Parameters
file: IO
chunk_size: Optional[int]
Chunk size in tiktoken tokens to be used when processing file.
chunk_overlap: Optional[int]
Chunk overlap in tiktoken tokens to be used when processing file.
skip_embedding_generation: bool
Flag to control whether or not embeddings should be generated and stored when processing file.
set_page_as_boundary: bool
Flag to control whether or not to set the a page's worth of content as the maximum amount of content that can appear in a chunk. Only valid for PDFs. See description route description for more information.
embedding_model: Union[TextEmbeddingGenerators
, str
]
Embedding model that will be used to embed file chunks.
use_ocr: bool
Whether or not to use OCR when processing files. Valid for PDFs, JPEGs, and PNGs. Useful for documents with tables, images, and/or scanned text.
generate_sparse_vectors: bool
Whether or not to generate sparse vectors for the file. This is required for the file to be a candidate for hybrid search.
prepend_filename_to_chunks: bool
Whether or not to prepend the file's name to chunks.
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
parse_pdf_tables_with_ocr: bool
Whether to use rich table parsing when use_ocr
is enabled.
detect_audio_language: bool
Whether to automatically detect the language of the uploaded audio file.
transcription_service: TranscriptionServiceNullable
The transcription service to use for audio files. If no service is specified, 'deepgram' will be used.
include_speaker_labels: bool
Detect multiple speakers and label segments of speech by speaker for audio files.
media_type: FileContentTypesNullable
The media type of the file. If not provided, it will be inferred from the file extension.
split_rows: bool
Whether to split tabular rows into chunks. Currently only valid for CSV, TSV, and XLSX files.
enable_cold_storage: bool
Enable cold storage for the file. If set to true, the file will be moved to cold storage after a certain period of inactivity. Default is false.
hot_storage_time_to_live: Optional[int]
Time in seconds after which the file will be moved to cold storage.
generate_chunks_only: bool
If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.
store_file_only: bool
If this flag is enabled, the file will be stored with Carbon, but no processing will be done.
โ๏ธ Request Body
BodyCreateUploadFileUploadfilePost
๐ Return
๐ Endpoint
/uploadfile
post
๐ Back to Table of Contents
carbon.files.upload_from_url
Create Upload File From Url
๐ ๏ธ Usage
upload_from_url_response = carbon.files.upload_from_url(
url="string_example",
file_name="string_example",
chunk_size=1,
chunk_overlap=1,
skip_embedding_generation=False,
set_page_as_boundary=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
use_textract=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
parse_pdf_tables_with_ocr=False,
detect_audio_language=False,
transcription_service="assemblyai",
include_speaker_labels=False,
media_type="TEXT",
split_rows=False,
cold_storage_params={
"enable_cold_storage": False,
},
generate_chunks_only=False,
store_file_only=False,
)
โ๏ธ Parameters
url: str
file_name: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: bool
set_page_as_boundary: bool
embedding_model: EmbeddingGenerators
generate_sparse_vectors: bool
use_textract: bool
prepend_filename_to_chunks: bool
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
parse_pdf_tables_with_ocr: bool
detect_audio_language: bool
transcription_service: TranscriptionServiceNullable
include_speaker_labels: bool
media_type: FileContentTypesNullable
split_rows: bool
cold_storage_params: ColdStorageProps
generate_chunks_only: bool
If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.
store_file_only: bool
If this flag is enabled, the file will be stored with Carbon, but no processing will be done.
โ๏ธ Request Body
๐ Return
๐ Endpoint
/upload_file_from_url
post
๐ Back to Table of Contents
carbon.files.upload_text
Carbon supports multiple models for use in generating embeddings for files. For images, we support Vertex AI's
multimodal model; for text, we support OpenAI's text-embedding-ada-002
and Cohere's embed-multilingual-v3.0.
The model can be specified via the embedding_model
parameter (in the POST body for /embeddings
, and a query
parameter in /uploadfile
). If no model is supplied, the text-embedding-ada-002
is used by default. When performing
embedding queries, embeddings from files that used the specified model will be considered in the query.
For example, if files A and B have embeddings generated with OPENAI
, and files C and D have embeddings generated with
COHERE_MULTILINGUAL_V3
, then by default, queries will only consider files A and B. If COHERE_MULTILINGUAL_V3
is
specified as the embedding_model
in /embeddings
, then only files C and D will be considered. Make sure that
the set of all files you want considered for a query have embeddings generated via the same model. For now, do not
set VERTEX_MULTIMODAL
as an embedding_model
. This model is used automatically by Carbon when it detects an image file.
๐ ๏ธ Usage
upload_text_response = carbon.files.upload_text(
contents="aaaaa",
name="string_example",
chunk_size=1,
chunk_overlap=1,
skip_embedding_generation=False,
overwrite_file_id=1,
embedding_model="OPENAI",
generate_sparse_vectors=False,
cold_storage_params={
"enable_cold_storage": False,
},
generate_chunks_only=False,
store_file_only=False,
)
โ๏ธ Parameters
contents: str
name: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: bool
overwrite_file_id: Optional[int]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
cold_storage_params: ColdStorageProps
generate_chunks_only: bool
If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.
store_file_only: bool
If this flag is enabled, the file will be stored with Carbon, but no processing will be done.
โ๏ธ Request Body
๐ Return
๐ Endpoint
/upload_text
post
๐ Back to Table of Contents
carbon.integrations.cancel
Cancel Data Source Items Sync
๐ ๏ธ Usage
cancel_response = carbon.integrations.cancel(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: int
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/items/sync/cancel
post
๐ Back to Table of Contents
carbon.integrations.connect_data_source
Connect Data Source
๐ ๏ธ Usage
connect_data_source_response = carbon.integrations.connect_data_source(
authentication={
"source": "GOOGLE_DRIVE",
"access_token": "access_token_example",
},
sync_options={
"chunk_size": 1500,
"chunk_overlap": 20,
"skip_embedding_generation": False,
"embedding_model": "OPENAI",
"generate_sparse_vectors": False,
"prepend_filename_to_chunks": False,
"sync_files_on_connection": True,
"set_page_as_boundary": False,
"enable_file_picker": True,
"sync_source_items": True,
"incremental_sync": False,
},
)
โ๏ธ Parameters
authentication: Union[OAuthAuthentication
, NotionAuthentication
, OneDriveAuthentication
, SharepointAuthentication
, ConfluenceAuthentication
, ZendeskAuthentication
, ZoteroAuthentication
, GitbookAuthetication
, SalesforceAuthentication
, FreskdeskAuthentication
, S3Authentication
, AzureBlobStorageAuthentication
, GithubAuthentication
, ServiceNowAuthentication
, GuruAuthentication
, GongAuthentication
]
sync_options: SyncOptions
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/connect
post
๐ Back to Table of Contents
carbon.integrations.connect_freshdesk
Refer this article to obtain an API key https://support.freshdesk.com/en/support/solutions/articles/215517. Make sure that your API key has the permission to read solutions from your account and you are on a paid plan. Once you have an API key, you can make a request to this endpoint along with your freshdesk domain. This will trigger an automatic sync of the articles in your "solutions" tab. Additional parameters below can be used to associate data with the synced articles or modify the sync behavior.
๐ ๏ธ Usage
connect_freshdesk_response = carbon.integrations.connect_freshdesk(
domain="string_example",
api_key="string_example",
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
sync_files_on_connection=True,
request_id="string_example",
sync_source_items=True,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
domain: str
api_key: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool
Enabling this flag will fetch all available content from the source to be listed via list items endpoint
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/freshdesk
post
๐ Back to Table of Contents
carbon.integrations.connect_gitbook
You will need an access token to connect your Gitbook account. Note that the permissions will be defined by the user generating access token so make sure you have the permission to access spaces you will be syncing. Refer this article for more details https://developer.gitbook.com/gitbook-api/authentication. Additionally, you need to specify the name of organization you will be syncing data from.
๐ ๏ธ Usage
connect_gitbook_response = carbon.integrations.connect_gitbook(
organization="string_example",
access_token="string_example",
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
sync_files_on_connection=True,
request_id="string_example",
sync_source_items=True,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
organization: str
access_token: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool
Enabling this flag will fetch all available content from the source to be listed via list items endpoint
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/gitbook
post
๐ Back to Table of Contents
carbon.integrations.connect_guru
You will need an access token to connect your Guru account. To obtain an access token, follow the steps highlighted here https://help.getguru.com/docs/gurus-api#obtaining-a-user-token. The username should be your Guru username.
๐ ๏ธ Usage
connect_guru_response = carbon.integrations.connect_guru(
username="string_example",
access_token="string_example",
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
sync_files_on_connection=True,
request_id="string_example",
sync_source_items=True,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
username: str
access_token: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
sync_files_on_connection: Optional[bool]
request_id: Optional[str]
sync_source_items: bool
Enabling this flag will fetch all available content from the source to be listed via list items endpoint
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/guru
post
๐ Back to Table of Contents
carbon.integrations.create_aws_iam_user
This endpoint can be used to connect S3 as well as Digital Ocean Spaces (S3 compatible)
For S3, create a new IAM user with permissions to:
- List all buckets.
- Read from the specific buckets and objects to sync with Carbon. Ensure any future buckets or objects carry the same permissions.
๐ ๏ธ Usage
create_aws_iam_user_response = carbon.integrations.create_aws_iam_user(
access_key="string_example",
access_key_secret="string_example",
sync_source_items=True,
endpoint_url="string_example",
)
โ๏ธ Parameters
access_key: str
access_key_secret: str
sync_source_items: bool
Enabling this flag will fetch all available content from the source to be listed via list items endpoint
endpoint_url: Optional[str]
You can specify a Digital Ocean endpoint URL to connect a Digital Ocean Space through this endpoint. The URL should be of format .digitaloceanspaces.com. It's not required for S3 buckets.
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/s3
post
๐ Back to Table of Contents
carbon.integrations.get_oauth_url
This endpoint can be used to generate the following URLs
- An OAuth URL for OAuth based connectors
- A file syncing URL which skips the OAuth flow if the user already has a valid access token and takes them to the success state.
๐ ๏ธ Usage
get_oauth_url_response = carbon.integrations.get_oauth_url(
service="BOX",
tags=None,
scope="string_example",
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
zendesk_subdomain="string_example",
microsoft_tenant="string_example",
sharepoint_site_name="string_example",
confluence_subdomain="string_example",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
salesforce_domain="string_example",
sync_files_on_connection=True,
set_page_as_boundary=False,
data_source_id=1,
connecting_new_account=False,
request_id="string_example",
use_ocr=False,
parse_pdf_tables_with_ocr=False,
enable_file_picker=True,
sync_source_items=True,
incremental_sync=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
automatically_open_file_picker=True,
gong_account_email="string_example",
servicenow_credentials={
"instance_subdomain": "instance_subdomain_example",
"client_id": "client_id_example",
"client_secret": "client_secret_example",
"redirect_uri": "redirect_uri_example",
},
)
โ๏ธ Parameters
service: OauthBasedConnectors
tags: Union[bool, date, datetime, dict, float, int, list, str, None]
scope: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
zendesk_subdomain: Optional[str]
microsoft_tenant: Optional[str]
sharepoint_site_name: Optional[str]
confluence_subdomain: Optional[str]
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
salesforce_domain: Optional[str]
sync_files_on_connection: Optional[bool]
Used to specify whether Carbon should attempt to sync all your files automatically when authorization is complete. This is only supported for a subset of connectors and will be ignored for the rest. Supported connectors: Intercom, Zendesk, Gitbook, Confluence, Salesforce, Freshdesk
set_page_as_boundary: bool
data_source_id: Optional[int]
Used to specify a data source to sync from if you have multiple connected. It can be skipped if you only have one data source of that type connected or are connecting a new account.
connecting_new_account: Optional[bool]
Used to connect a new data source. If not specified, we will attempt to create a sync URL for an existing data source based on type and ID.
request_id: Optional[str]
This request id will be added to all files that get synced using the generated OAuth URL
use_ocr: Optional[bool]
Enable OCR for files that support it. Supported formats: pdf, png, jpg
parse_pdf_tables_with_ocr: Optional[bool]
enable_file_picker: bool
Enable integration's file picker for sources that support it. Supported sources: BOX, DROPBOX, GOOGLE_DRIVE, ONEDRIVE, SHAREPOINT
sync_source_items: bool
Enabling this flag will fetch all available content from the source to be listed via list items endpoint
incremental_sync: bool
Only sync files if they have not already been synced or if the embedding properties have changed. This flag is currently supported by ONEDRIVE, GOOGLE_DRIVE, BOX, DROPBOX, INTERCOM, GMAIL, OUTLOOK, ZENDESK, CONFLUENCE, NOTION, SHAREPOINT, SERVICENOW. It will be ignored for other data sources.
file_sync_config: FileSyncConfigNullable
automatically_open_file_picker: Optional[bool]
Automatically open source file picker after the OAuth flow is complete. This flag is currently supported by BOX, DROPBOX, GOOGLE_DRIVE, ONEDRIVE, SHAREPOINT. It will be ignored for other data sources.
gong_account_email: Optional[str]
If you are connecting a Gong account, you need to input the email of the account you wish to connect. This email will be used to identify your carbon data source.
servicenow_credentials: ServiceNowCredentialsNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/oauth_url
post
๐ Back to Table of Contents
carbon.integrations.list_confluence_pages
This endpoint has been deprecated. Use /integrations/items/list instead.
To begin listing a user's Confluence pages, at least a data_source_id
of a connected
Confluence account must be specified. This base request returns a list of root pages for
every space the user has access to in a Confluence instance. To traverse further down
the user's page directory, additional requests to this endpoint can be made with the same
data_source_id
and with parent_id
set to the id of page from a previous request. For
convenience, the has_children
property in each directory item in the response list will
flag which pages will return non-empty lists of pages when set as the parent_id
.
๐ ๏ธ Usage
list_confluence_pages_response = carbon.integrations.list_confluence_pages(
data_source_id=1,
parent_id="string_example",
)
โ๏ธ Parameters
data_source_id: int
parent_id: Optional[str]
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/confluence/list
post
๐ Back to Table of Contents
carbon.integrations.list_conversations
List all of your public and private channels, DMs, and Group DMs. The ID from response
can be used as a filter to sync messages to Carbon
types: Comma separated list of types. Available types are im (DMs), mpim (group DMs), public_channel, and private_channel.
Defaults to public_channel.
cursor: Used for pagination. If next_cursor is returned in response, you need to pass it as the cursor in the next request
data_source_id: Data source needs to be specified if you have linked multiple slack accounts
exclude_archived: Should archived conversations be excluded, defaults to true
๐ ๏ธ Usage
list_conversations_response = carbon.integrations.list_conversations(
types="public_channel",
cursor="string_example",
data_source_id=1,
exclude_archived=True,
)
โ๏ธ Parameters
types: str
cursor: Optional[str]
data_source_id: Optional[int]
exclude_archived: bool
๐ Endpoint
/integrations/slack/conversations
get
๐ Back to Table of Contents
carbon.integrations.list_data_source_items
List Data Source Items
๐ ๏ธ Usage
list_data_source_items_response = carbon.integrations.list_data_source_items(
data_source_id=1,
parent_id="string_example",
filters={},
pagination={
"limit": 10,
"offset": 0,
},
order_by="name",
order_dir="asc",
)
โ๏ธ Parameters
data_source_id: int
parent_id: Optional[str]
filters: ListItemsFiltersNullable
pagination: Pagination
order_by: ExternalSourceItemsOrderBy
order_dir: OrderDirV2
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/items/list
post
๐ Back to Table of Contents
carbon.integrations.list_folders
After connecting your Outlook account, you can use this endpoint to list all of your folders on outlook. This includes both system folders like "inbox" and user created folders.
๐ ๏ธ Usage
list_folders_response = carbon.integrations.list_folders(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: Optional[int]
๐ Endpoint
/integrations/outlook/user_folders
get
๐ Back to Table of Contents
carbon.integrations.list_gitbook_spaces
After connecting your Gitbook account, you can use this endpoint to list all of your spaces under current organization.
๐ ๏ธ Usage
list_gitbook_spaces_response = carbon.integrations.list_gitbook_spaces(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: int
๐ Endpoint
/integrations/gitbook/spaces
get
๐ Back to Table of Contents
carbon.integrations.list_labels
After connecting your Gmail account, you can use this endpoint to list all of your labels. User created labels will have the type "user" and Gmail's default labels will have the type "system"
๐ ๏ธ Usage
list_labels_response = carbon.integrations.list_labels(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: Optional[int]
๐ Endpoint
/integrations/gmail/user_labels
get
๐ Back to Table of Contents
carbon.integrations.list_outlook_categories
After connecting your Outlook account, you can use this endpoint to list all of your categories on outlook. We currently support listing up to 250 categories.
๐ ๏ธ Usage
list_outlook_categories_response = carbon.integrations.list_outlook_categories(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: Optional[int]
๐ Endpoint
/integrations/outlook/user_categories
get
๐ Back to Table of Contents
carbon.integrations.list_repos
Once you have connected your GitHub account, you can use this endpoint to list the repositories your account has access to. You can use a data source ID or username to fetch from a specific account.
๐ ๏ธ Usage
list_repos_response = carbon.integrations.list_repos(
per_page=30,
page=1,
data_source_id=1,
)
โ๏ธ Parameters
per_page: int
page: int
data_source_id: Optional[int]
๐ Endpoint
/integrations/github/repos
get
๐ Back to Table of Contents
carbon.integrations.sync_azure_blob_files
After optionally loading the items via /integrations/items/sync and integrations/items/list, use the container name and file name as the ID in this endpoint to sync them into Carbon. Additional parameters below can associate data with the selected items or modify the sync behavior
๐ ๏ธ Usage
sync_azure_blob_files_response = carbon.integrations.sync_azure_blob_files(
ids=[{}],
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
set_page_as_boundary=False,
data_source_id=1,
request_id="string_example",
use_ocr=False,
parse_pdf_tables_with_ocr=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
ids: List[AzureBlobGetFileInput
]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
set_page_as_boundary: bool
data_source_id: Optional[int]
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/azure_blob_storage/files
post
๐ Back to Table of Contents
carbon.integrations.sync_azure_blob_storage
This endpoint can be used to connect Azure Blob Storage.
For Azure Blob Storage, follow these steps:
- Create a new Azure Storage account and grant the following permissions:
- List containers.
- Read from specific containers and blobs to sync with Carbon. Ensure any future containers or blobs carry the same permissions.
- Generate a shared access signature (SAS) token or an access key for the storage account.
Once created, provide us with the following details to generate the connection URL:
- Storage Account KeyName.
- Storage Account Name.
๐ ๏ธ Usage
sync_azure_blob_storage_response = carbon.integrations.sync_azure_blob_storage(
account_name="string_example",
account_key="string_example",
sync_source_items=True,
)
โ๏ธ Parameters
account_name: str
account_key: str
sync_source_items: bool
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/azure_blob_storage
post
๐ Back to Table of Contents
carbon.integrations.sync_confluence
This endpoint has been deprecated. Use /integrations/files/sync instead.
After listing pages in a user's Confluence account, the set of selected page ids
and the
connected account's data_source_id
can be passed into this endpoint to sync them into
Carbon. Additional parameters listed below can be used to associate data to the selected
pages or alter the behavior of the sync.
๐ ๏ธ Usage
sync_confluence_response = carbon.integrations.sync_confluence(
data_source_id=1,
ids=["string_example"],
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
set_page_as_boundary=False,
request_id="string_example",
use_ocr=False,
parse_pdf_tables_with_ocr=False,
incremental_sync=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
data_source_id: int
ids: Union[List[str]
, List[SyncFilesIds
]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
set_page_as_boundary: bool
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
incremental_sync: bool
Only sync files if they have not already been synced or if the embedding properties have changed. This flag is currently supported by ONEDRIVE, GOOGLE_DRIVE, BOX, DROPBOX, INTERCOM, GMAIL, OUTLOOK, ZENDESK, CONFLUENCE, NOTION, SHAREPOINT, SERVICENOW. It will be ignored for other data sources.
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/confluence/sync
post
๐ Back to Table of Contents
carbon.integrations.sync_data_source_items
Sync Data Source Items
๐ ๏ธ Usage
sync_data_source_items_response = carbon.integrations.sync_data_source_items(
data_source_id=1,
)
โ๏ธ Parameters
data_source_id: int
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/items/sync
post
๐ Back to Table of Contents
carbon.integrations.sync_files
After listing files and folders via /integrations/items/sync and integrations/items/list, use the selected items' external ids as the ids in this endpoint to sync them into Carbon. Sharepoint items take an additional parameter root_id, which identifies the drive the file or folder is in and is stored in root_external_id. That additional paramter is optional and excluding it will tell the sync to assume the item is stored in the default Documents drive.
๐ ๏ธ Usage
sync_files_response = carbon.integrations.sync_files(
data_source_id=1,
ids=["string_example"],
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
set_page_as_boundary=False,
request_id="string_example",
use_ocr=False,
parse_pdf_tables_with_ocr=False,
incremental_sync=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
data_source_id: int
ids: Union[List[str]
, List[SyncFilesIds
]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGeneratorsNullable
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
set_page_as_boundary: bool
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
incremental_sync: bool
Only sync files if they have not already been synced or if the embedding properties have changed. This flag is currently supported by ONEDRIVE, GOOGLE_DRIVE, BOX, DROPBOX, INTERCOM, GMAIL, OUTLOOK, ZENDESK, CONFLUENCE, NOTION, SHAREPOINT, SERVICENOW. It will be ignored for other data sources.
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/files/sync
post
๐ Back to Table of Contents
carbon.integrations.sync_git_hub
Refer this article to obtain an access token https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens. Make sure that your access token has the permission to read content from your desired repos. Note that if your access token expires you will need to manually update it through this endpoint.
๐ ๏ธ Usage
sync_git_hub_response = carbon.integrations.sync_git_hub(
username="string_example",
access_token="string_example",
sync_source_items=False,
)
โ๏ธ Parameters
username: str
access_token: str
sync_source_items: bool
Enabling this flag will fetch all available content from the source to be listed via list items endpoint
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/github
post
๐ Back to Table of Contents
carbon.integrations.sync_gitbook
You can sync upto 20 Gitbook spaces at a time using this endpoint. Additional parameters below can be used to associate data with the synced pages or modify the sync behavior.
๐ ๏ธ Usage
sync_gitbook_response = carbon.integrations.sync_gitbook(
space_ids=["string_example"],
data_source_id=1,
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
request_id="string_example",
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
space_ids: GitbookSyncRequestSpaceIds
data_source_id: int
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
request_id: Optional[str]
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Endpoint
/integrations/gitbook/sync
post
๐ Back to Table of Contents
carbon.integrations.sync_gmail
Once you have successfully connected your gmail account, you can choose which emails to sync with us using the filters parameter. Filters is a JSON object with key value pairs. It also supports AND and OR operations. For now, we support a limited set of keys listed below.
label: Inbuilt Gmail labels, for example "Important" or a custom label you created.
after or before: A date in YYYY/mm/dd format (example 2023/12/31). Gets emails after/before a certain date.
You can also use them in combination to get emails from a certain period.
is: Can have the following values - starred, important, snoozed, and unread
from: Email address of the sender
to: Email address of the recipient
in: Can have the following values - sent (sync emails sent by the user)
has: Can have the following values - attachment (sync emails that have attachments)
Using keys or values outside of the specified values can lead to unexpected behaviour.
An example of a basic query with filters can be
{
"filters": {
"key": "label",
"value": "Test"
}
}
Which will list all emails that have the label "Test".
You can use AND and OR operation in the following way:
{
"filters": {
"AND": [
{
"key": "after",
"value": "2024/01/07"
},
{
"OR": [
{
"key": "label",
"value": "Personal"
},
{
"key": "is",
"value": "starred"
}
]
}
]
}
}
This will return emails after 7th of Jan that are either starred or have the label "Personal". Note that this is the highest level of nesting we support, i.e. you can't add more AND/OR filters within the OR filter in the above example.
๐ ๏ธ Usage
sync_gmail_response = carbon.integrations.sync_gmail(
filters={},
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
data_source_id=1,
request_id="string_example",
sync_attachments=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
incremental_sync=False,
)
โ๏ธ Parameters
filters: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
data_source_id: Optional[int]
request_id: Optional[str]
sync_attachments: Optional[bool]
file_sync_config: FileSyncConfigNullable
incremental_sync: bool
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/gmail/sync
post
๐ Back to Table of Contents
carbon.integrations.sync_outlook
Once you have successfully connected your Outlook account, you can choose which emails to sync with us
using the filters and folder parameter. "folder" should be the folder you want to sync from Outlook. By default
we get messages from your inbox folder.
Filters is a JSON object with key value pairs. It also supports AND and OR operations.
For now, we support a limited set of keys listed below.
category: Custom categories that you created in Outlook.
after or before: A date in YYYY/mm/dd format (example 2023/12/31). Gets emails after/before a certain date. You can also use them in combination to get emails from a certain period.
is: Can have the following values: flagged
from: Email address of the sender
An example of a basic query with filters can be
{
"filters": {
"key": "category",
"value": "Test"
}
}
Which will list all emails that have the category "Test".
Specifying a custom folder in the same query
{
"folder": "Folder Name",
"filters": {
"key": "category",
"value": "Test"
}
}
You can use AND and OR operation in the following way:
{
"filters": {
"AND": [
{
"key": "after",
"value": "2024/01/07"
},
{
"OR": [
{
"key": "category",
"value": "Personal"
},
{
"key": "category",
"value": "Test"
},
]
}
]
}
}
This will return emails after 7th of Jan that have either Personal or Test as category. Note that this is the highest level of nesting we support, i.e. you can't add more AND/OR filters within the OR filter in the above example.
๐ ๏ธ Usage
sync_outlook_response = carbon.integrations.sync_outlook(
filters={},
tags={},
folder="Inbox",
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
data_source_id=1,
request_id="string_example",
sync_attachments=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
incremental_sync=False,
)
โ๏ธ Parameters
filters: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
folder: Optional[str]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
data_source_id: Optional[int]
request_id: Optional[str]
sync_attachments: Optional[bool]
file_sync_config: FileSyncConfigNullable
incremental_sync: bool
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/outlook/sync
post
๐ Back to Table of Contents
carbon.integrations.sync_repos
You can retreive repos your token has access to using /integrations/github/repos and sync their content. You can also pass full name of any public repository (username/repo-name). This will store the repo content with carbon which can be accessed through /integrations/items/list endpoint. Maximum of 25 repositories are accepted per request.
๐ ๏ธ Usage
sync_repos_response = carbon.integrations.sync_repos(
repos=["string_example"],
data_source_id=1,
)
โ๏ธ Parameters
repos: GithubFetchReposRequestRepos
data_source_id: Optional[int]
โ๏ธ Request Body
๐ Endpoint
/integrations/github/sync_repos
post
๐ Back to Table of Contents
carbon.integrations.sync_rss_feed
Rss Feed
๐ ๏ธ Usage
sync_rss_feed_response = carbon.integrations.sync_rss_feed(
url="string_example",
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
request_id="string_example",
)
โ๏ธ Parameters
url: str
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
request_id: Optional[str]
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/rss_feed
post
๐ Back to Table of Contents
carbon.integrations.sync_s3_files
After optionally loading the items via /integrations/items/sync and integrations/items/list, use the bucket name and object key as the ID in this endpoint to sync them into Carbon. Additional parameters below can associate data with the selected items or modify the sync behavior
๐ ๏ธ Usage
sync_s3_files_response = carbon.integrations.sync_s3_files(
ids=[{}],
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
max_items_per_chunk=1,
set_page_as_boundary=False,
data_source_id=1,
request_id="string_example",
use_ocr=False,
parse_pdf_tables_with_ocr=False,
file_sync_config={
"auto_synced_source_types": ["ARTICLE"],
"sync_attachments": False,
"detect_audio_language": False,
"transcription_service": "assemblyai",
"include_speaker_labels": False,
"split_rows": False,
"generate_chunks_only": False,
"store_file_only": False,
"skip_file_processing": False,
},
)
โ๏ธ Parameters
ids: List[S3GetFileInput
]
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
max_items_per_chunk: Optional[int]
Number of objects per chunk. For csv, tsv, xlsx, and json files only.
set_page_as_boundary: bool
data_source_id: Optional[int]
request_id: Optional[str]
use_ocr: Optional[bool]
parse_pdf_tables_with_ocr: Optional[bool]
file_sync_config: FileSyncConfigNullable
โ๏ธ Request Body
๐ Return
๐ Endpoint
/integrations/s3/files
post
๐ Back to Table of Contents
carbon.integrations.sync_slack
You can list all conversations using the endpoint /integrations/slack/conversations. The ID of conversation will be used as an input for this endpoint with timestamps as optional filters.
๐ ๏ธ Usage
sync_slack_response = carbon.integrations.sync_slack(
filters={
"conversation_id": "conversation_id_example",
},
tags={},
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
embedding_model="OPENAI",
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
data_source_id=1,
request_id="string_example",
)
โ๏ธ Parameters
filters: SlackFilters
tags: Optional[Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
embedding_model: EmbeddingGenerators
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
data_source_id: Optional[int]
request_id: Optional[str]
โ๏ธ Request Body
๐ Endpoint
/integrations/slack/sync
post
๐ Back to Table of Contents
carbon.organizations.get
Get Organization
๐ ๏ธ Usage
get_response = carbon.organizations.get()
๐ Return
๐ Endpoint
/organization
get
๐ Back to Table of Contents
carbon.organizations.update
Update Organization
๐ ๏ธ Usage
update_response = carbon.organizations.update(
global_user_config={},
data_source_configs={
"key": {
"allowed_file_formats": [],
},
},
)
โ๏ธ Parameters
global_user_config: UserConfigurationNullable
data_source_configs: UpdateOrganizationInputDataSourceConfigs
โ๏ธ Request Body
๐ Return
๐ Endpoint
/organization/update
post
๐ Back to Table of Contents
carbon.organizations.update_stats
Use this endpoint to reaggregate the statistics for an organization, for example aggregate_file_size. The reaggregation process is asyncronous so a webhook will be sent with the event type being FILE_STATISTICS_AGGREGATED to notify when the process is complee. After this aggregation is complete, the updated statistics can be retrieved using the /organization endpoint. The response of /organization willalso contain a timestamp of the last time the statistics were reaggregated.
๐ ๏ธ Usage
update_stats_response = carbon.organizations.update_stats()
๐ Return
๐ Endpoint
/organization/statistics
post
๐ Back to Table of Contents
carbon.users.delete
Delete Users
๐ ๏ธ Usage
delete_response = carbon.users.delete(
customer_ids=["string_example"],
)
โ๏ธ Parameters
customer_ids: DeleteUsersInputCustomerIds
โ๏ธ Request Body
๐ Return
๐ Endpoint
/delete_users
post
๐ Back to Table of Contents
carbon.users.get
User Endpoint
๐ ๏ธ Usage
get_response = carbon.users.get(
customer_id="string_example",
)
โ๏ธ Parameters
customer_id: str
โ๏ธ Request Body
๐ Return
๐ Endpoint
/user
post
๐ Back to Table of Contents
carbon.users.list
List users within an organization
๐ ๏ธ Usage
list_response = carbon.users.list(
pagination={
"limit": 10,
"offset": 0,
},
filters={},
order_by="created_at",
order_dir="asc",
include_count=False,
)
โ๏ธ Parameters
pagination: Pagination
filters: ListUsersFilters
order_by: ListUsersOrderByTypes
order_dir: OrderDirV2
include_count: bool
โ๏ธ Request Body
๐ Return
๐ Endpoint
/list_users
post
๐ Back to Table of Contents
carbon.users.toggle_user_features
Toggle User Features
๐ ๏ธ Usage
toggle_user_features_response = carbon.users.toggle_user_features(
configuration_key_name="string_example",
value={},
)
โ๏ธ Parameters
configuration_key_name: str
value: Dict[str, Union[bool, date, datetime, dict, float, int, list, str, None]]
โ๏ธ Request Body
๐ Return
๐ Endpoint
/modify_user_configuration
post
๐ Back to Table of Contents
carbon.users.update_users
Update Users
๐ ๏ธ Usage
update_users_response = carbon.users.update_users(
customer_ids=["string_example"],
auto_sync_enabled_sources=["string_example"],
max_files=-1,
max_files_per_upload=-1,
)
โ๏ธ Parameters
customer_ids: UpdateUsersInputCustomerIds
auto_sync_enabled_sources: Union[List[DataSourceType
], str
]
List of data source types to enable auto sync for. Empty array will remove all sources and the string \"ALL\" will enable it for all data sources
max_files: Optional[int]
Custom file upload limit for the user over all user's files across all uploads. If set, then the user will not be allowed to upload more files than this limit. If not set, or if set to -1, then the user will have no limit.
max_files_per_upload: Optional[int]
Custom file upload limit for the user across a single upload. If set, then the user will not be allowed to upload more files than this limit in a single upload. If not set, or if set to -1, then the user will have no limit.
โ๏ธ Request Body
๐ Return
๐ Endpoint
/update_users
post
๐ Back to Table of Contents
carbon.utilities.fetch_urls
Extracts all URLs from a webpage.
Args: url (str): URL of the webpage
Returns: FetchURLsResponse: A response object with a list of URLs extracted from the webpage and the webpage content.
๐ ๏ธ Usage
fetch_urls_response = carbon.utilities.fetch_urls(
url="url_example",
)
โ๏ธ Parameters
url: str
๐ Return
๐ Endpoint
/fetch_urls
get
๐ Back to Table of Contents
carbon.utilities.fetch_webpage
Fetch Urls V2
๐ ๏ธ Usage
fetch_webpage_response = carbon.utilities.fetch_webpage(
url="string_example",
)
โ๏ธ Parameters
url: str
โ๏ธ Request Body
๐ Endpoint
/fetch_webpage
post
๐ Back to Table of Contents
carbon.utilities.fetch_youtube_transcripts
Fetches english transcripts from YouTube videos.
Args: id (str): The ID of the YouTube video. raw (bool): Whether to return the raw transcript or not. Defaults to False.
Returns: dict: A dictionary with the transcript of the YouTube video.
๐ ๏ธ Usage
fetch_youtube_transcripts_response = carbon.utilities.fetch_youtube_transcripts(
id="id_example",
raw=False,
)
โ๏ธ Parameters
id: str
raw: bool
๐ Return
๐ Endpoint
/fetch_youtube_transcript
get
๐ Back to Table of Contents
carbon.utilities.process_sitemap
Retrieves all URLs from a sitemap, which can subsequently be utilized with our web_scrape
endpoint.
๐ ๏ธ Usage
process_sitemap_response = carbon.utilities.process_sitemap(
url="url_example",
)
โ๏ธ Parameters
url: str
๐ Endpoint
/process_sitemap
get
๐ Back to Table of Contents
carbon.utilities.scrape_sitemap
Extracts all URLs from a sitemap and performs a web scrape on each of them.
Args: sitemap_url (str): URL of the sitemap
Returns: dict: A response object with the status of the scraping job message.-->
๐ ๏ธ Usage
scrape_sitemap_response = carbon.utilities.scrape_sitemap(
url="string_example",
tags={
"key": "string_example",
},
max_pages_to_scrape=1,
chunk_size=1500,
chunk_overlap=20,
skip_embedding_generation=False,
enable_auto_sync=False,
generate_sparse_vectors=False,
prepend_filename_to_chunks=False,
html_tags_to_skip=[],
css_classes_to_skip=[],
css_selectors_to_skip=[],
embedding_model="OPENAI",
url_paths_to_include=[],
url_paths_to_exclude=[],
urls_to_scrape=[],
download_css_and_media=False,
generate_chunks_only=False,
store_file_only=False,
)
โ๏ธ Parameters
url: str
tags: SitemapScrapeRequestTags
max_pages_to_scrape: Optional[int]
chunk_size: Optional[int]
chunk_overlap: Optional[int]
skip_embedding_generation: Optional[bool]
enable_auto_sync: Optional[bool]
generate_sparse_vectors: Optional[bool]
prepend_filename_to_chunks: Optional[bool]
html_tags_to_skip: SitemapScrapeRequestHtmlTagsToSkip
css_classes_to_skip: SitemapScrapeRequestCssClassesToSkip
css_selectors_to_skip: SitemapScrapeRequestCssSelectorsToSkip
embedding_model: EmbeddingGenerators
url_paths_to_include: SitemapScrapeRequestUrlPathsToInclude
url_paths_to_exclude: SitemapScrapeRequestUrlPathsToExclude
urls_to_scrape: SitemapScrapeRequestUrlsToScrape
download_css_and_media: Optional[bool]
Whether the scraper should download css and media from the page (images, fonts, etc). Scrapes might take longer to finish with this flag enabled, but the success rate is improved.
generate_chunks_only: bool
If this flag is enabled, the file will be chunked and stored with Carbon, but no embeddings will be generated. This overrides the skip_embedding_generation flag.
store_file_only: bool
If this flag is enabled, the file will be stored with Carbon, but no processing will be done.
โ๏ธ Request Body
๐ Endpoint
/scrape_sitemap
post
๐ Back to Table of Contents
carbon.utilities.scrape_web
Conduct a web scrape on a given webpage URL. Our web scraper is fully compatible with JavaScript and supports recursion depth, enabling you to efficiently extract all content from the target website.
๐ ๏ธ Usage
scrape_web_response = carbon.utilities.scrape_web(
body=[
{
"url": "url_example",
"recursion_depth": 3,
"max_pages_to_scrape": 100,
"chunk_size": 1500,
"chunk_overlap": 20,
"skip_embedding_generation": False,
"enable_auto_sync": False,
"generate_sparse_vectors": False,
"prepend_filename_to_chunks": False,
"html_tags_to_skip": [],
"css_classes_to_skip": [],
"css_selectors_to_skip": [],
"embedding_model": "OPENAI",
"url_paths_to_include": [],
"download_css_and_media": False,
"generate_chunks_only": False,
"store_file_only": False,
}
],
)
โ๏ธ Request Body
๐ Endpoint
/web_scrape
post
๐ Back to Table of Contents
carbon.utilities.search_urls
Perform a web search and obtain a list of relevant URLs.
As an illustration, when you perform a search for โcontent related to MRNA,โ you will receive a list of links such as the following:
- https://tomrenz.substack.com/p/mrna-and-why-it-matters
- https://www.statnews.com/2020/11/10/the-story-of-mrna-how-a-once-dismissed-idea-became-a-leading-technology-in-the-covid-vaccine-race/
- https://www.statnews.com/2022/11/16/covid-19-vaccines-were-a-success-but-mrna-still-has-a-delivery-problem/
- https://joomi.substack.com/p/were-still-being-misled-about-how
Subsequently, you can submit these links to the web_scrape endpoint in order to retrieve the content of the respective web pages.
Args: query (str): Query to search for
Returns: FetchURLsResponse: A response object with a list of URLs for a given search query.
๐ ๏ธ Usage
search_urls_response = carbon.utilities.search_urls(
query="query_example",
)
โ๏ธ Parameters
query: str
๐ Return
๐ Endpoint
/search_urls
get
๐ Back to Table of Contents
carbon.utilities.user_webpages
User Web Pages
๐ ๏ธ Usage
user_webpages_response = carbon.utilities.user_webpages(
filters={},
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="asc",
)
โ๏ธ Parameters
filters: UserWebPagesFilters
pagination: Pagination
order_by: UserWebPageOrderByTypes
order_dir: OrderDirV2
โ๏ธ Request Body
๐ Endpoint
/user_webpages
post
๐ Back to Table of Contents
carbon.webhooks.add_url
Add Webhook Url
๐ ๏ธ Usage
add_url_response = carbon.webhooks.add_url(
url="string_example",
)
โ๏ธ Parameters
url: str
โ๏ธ Request Body
๐ Return
๐ Endpoint
/add_webhook
post
๐ Back to Table of Contents
carbon.webhooks.delete_url
Delete Webhook Url
๐ ๏ธ Usage
delete_url_response = carbon.webhooks.delete_url(
webhook_id=1,
)
โ๏ธ Parameters
webhook_id: int
๐ Return
๐ Endpoint
/delete_webhook/{webhook_id}
delete
๐ Back to Table of Contents
carbon.webhooks.urls
Webhook Urls
๐ ๏ธ Usage
urls_response = carbon.webhooks.urls(
pagination={
"limit": 10,
"offset": 0,
},
order_by="created_at",
order_dir="desc",
filters={
"ids": [],
},
)
โ๏ธ Parameters
pagination: Pagination
order_by: WebhookOrderByColumns
order_dir: OrderDir
filters: WebhookFilters
โ๏ธ Request Body
๐ Return
๐ Endpoint
/webhooks
post
๐ Back to Table of Contents
Author
This Python package is automatically generated by Konfig
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for carbon_python_sdk-0.2.40-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c7043992f067cf537d766b8b61f2ab2cfa2091f50224e9f26750148db3a4f76 |
|
MD5 | 882afeb7f7eb23d073904163879141af |
|
BLAKE2b-256 | 1bd0cd32ca86ba1344954956dd520b19aa927821a3ff0560317c9203f17dd025 |