Skip to main content

Card Sorting Utilities

Project description

Cardy

[!NOTE] This project is in alpha, significant changes and additions are expected.

Low-level card sorting utilities to compare card sorts — including calculating edit distances, d-neighbourhoods, and d-cliques of card sorts.

It is recommended to read Deibel et al. (2005)[^1] to familiarize yourself with the metrics covered in this library. In fact, that entie special issue of Expert Systems is excellent reading for anyone interested in analysing card sorting data.

Installation

pip install cardy

Usage

Card sorts are represented as collections of sets of cards: Colection[Set[T]] where each set represents a group.

Edit Distance

The edit distance between two sorts can be computed with the distance function:

from cardy import distance

sort1 = ({1, 2, 3}, {4, 5, 6}, {7, 8, 9})
sort2 = ({1, 2}, {3, 4}, {5, 6, 7}, {8, 9})

dist = distance(sort1, sort2)
print("Distance:", dist)  # Distance: 3

When comparing sorts for equality, assert an edit distance of zero:

if distance(sort1, sort2) == 0:
    ...

Cliques and Neighbourhoods

Cliques and neighbourhoods can be calculated using the clique and neighbourhood functions. Given a mapping of sort IDs to card sorts: Mapping[K, Collection[Set[T]]], a neighbourhood or clique is represented as a set of IDs: Set[K] of card sorts

Neighbourhoods

Neighbourhoods are always deterministic:

from cardy import neighbourhood

probe = ({1, 2, 3, 4, 5},)
sorts = {
    0: ({1, 2, 3}, {4, 5}),
    1: ({1, 2, 3}, {4, 5}, set()),
    2: ({1, 2}, {3}, {4, 5}),
    3: ({1, 2}, {3, 4}, {5}),
    4: ({1, 2, 4}, {3, 5}),
}

two_neighbourhood = neighbourhood(2, probe, sorts)
print(f"2-neighbourhood around `{probe}`: {two_neighbourhood}")
# 2-neighbourhood around `({1, 2, 3, 4, 5},)`: {0, 1, 4}

Cliques

Cliques can be non-deterministic — even when using a greedy strategy (default):

from cardy import clique

probe = ({1, 2}, {3})
sorts = {
    0: ({1}, {2}, {3}),
    1: ({2, 3}, {1}),
    2: ({1, 2, 3},),
}
one_clique = clique(1, probe, sorts)
print(f"1-clique around `{probe}`: {one_clique}")
# 1-clique around `({1, 2}, {3})`: {0, 1}
# OR
# 1-clique around `({1, 2}, {3})`: {1, 2}

The clique function allows for various heuristic strategies for selecting candidate card sorts (via ID). Heuristic functions are of the form: (int, Mapping[K, Collection[Set[T]]]) -> K — that is, a function that takes a the maximum clique diameter and a key to card sort mapping of viable candidates, and returns a key of a viable candidate based on some heuristic.

Two heuristic functions have been provided: random_strategy and greedy_strategy. random_strategy will select a candidate at random. greedy_strategy will select a candidate that reduces the size of the candidate pool by the smallest amount. In the case two or more candidates reduce the pool by the same amount, one is selected at random.

This behaviour can be changed by providing a deterministic heuristic function, or a deterministic Selector which provides a select method that picks a candidate in the case of ambiguity:

from cardy import clique, Selector, greedy_strategy


class MinSelector(Selector):
    def select(self, collection):
        # selects the candidate with the smallest key in case of ties
        # for greedy strategy
        return min(collection)


probe = ({1, 2}, {3})
sorts = {
    0: ({1}, {2}, {3}),
    1: ({2, 3}, {1}),
    2: ({1, 2, 3},),
}
one_clique = clique(
    1,
    probe,
    sorts,
    strategy=lambda d, c: greedy_strategy(d, c, MinSelector())
)
print(f"1-clique around `{probe}`: {one_clique}")
# 1-clique around `({1, 2}, {3})`: {0, 1}

Alternatively, a seed can be passed to the base Selector constructor.

[^1]: Deibel, K., Anderson, R. and Anderson, R. (2005), Using edit distance to analyze card sorts. Expert Systems, 22: 129-138. https://doi.org/10.1111/j.1468-0394.2005.00304.x

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cardy-0.0.3.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

cardy-0.0.3-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file cardy-0.0.3.tar.gz.

File metadata

  • Download URL: cardy-0.0.3.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for cardy-0.0.3.tar.gz
Algorithm Hash digest
SHA256 1e07ecbef9ea01afe5f1ee605d2b68b8be2767cd3344d475183097f3cdde7843
MD5 a2bcf059761e216cd4852b36a5c31b0f
BLAKE2b-256 3ae99ebf05b479acdcff76db1ef25454b95754b0ab9e6fa0dbfa67eded93681b

See more details on using hashes here.

File details

Details for the file cardy-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: cardy-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 6.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for cardy-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f92cfe7446d3a376a17edc1dafd223e868862f46bf3c2e8bbbde4a57e03564e0
MD5 c217b399d9f6c915719b5eb6f4395a9f
BLAKE2b-256 e5f8a8efad428e9bf04ee0ce92118c5109206b91f1ec0d7b9c1ba3bdb94ab0ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page