Package to read Carto datasets
Project description
Carto Reader
This package provides convenient tools for reading Carto (BiosenseWebster) files using python.
Installing
pip install carto_reader
Example usage
Data import
from carto_reader.carto_data import Carto
carto = Carto('./path/to/archive.zip')
Listing available maps
>>> list(carto)
['1-LA', '2-RA', '1-1-ReLA']
Access maps by their name or by index.
>>> carto[0]
<Map 1-LA: 2005 Points, 13559 x 27684 Mesh>
>>> carto['1-LA']
<Map 1-LA: 2005 Points, 13559 x 27684 Mesh>
Getting mapping points
Access map points by id or by index.
>>> la_map = carto['1-LA']
>>> la_map.points[0]
<Point id='5' @ 25.6723, -66.265, 78.4703>
>>> la_map.points['5']
Get a reference to the signal at a given point
>>> point = la_map.points[0]
>>> point.ref
<Signal Reference: @ts 2917695, channels: 20A 9 | 20A 9-10 ref: CS9-CS10>
Signals
The signal references are lazy-loaded, meaning that the point and signal files headers are read and only when the reference object is accessed.
Signals are stored by blocks in the Carto object, so that continuous block may be recreated from individually captured points, and to avoid redundancy.
To easily get reference and mapping signals from a given point, you may use the following call:
>>> carto.signal_from_point(point)
{'t': array([...]), 'uni': array([...]), 'bi': array([...]), 'ref': array([...])}
By default, a window of 1000ms of signal centered on the reference is returned. The interval of interest around this reference can be specified by inputing a slice as the second parameter of the function.
You can plot the signal using using the carto.plot_point(point)
method, which requires matplotlib.
You can also load all the signals in a case or in a given map using the carto.add_signal_files()
method.
Note that this may take some time as a high number of signal files need to be parsed.
Once signals are loaded, you can access them directly by channel using the sig
attribute, which is a dictionary of channels:
>>> list(carto.sig)
['M1', 'M2', ..., 'aVR', 'aVF']
>>> carto.sig['aVF']
<Channel aVF: 553 s of signal in 67 parts over 798 s>
Signals can be accessed by timestamp sing slice notation. Parts of the signal which are not present in the file will be replaced by NaNs. Individual points grabbed by the system usually store 2500ms of signal in a row.
>>> aVf = carto.sig['aVF']
>>> start = aVf.first_sample
>>> aVf[start:start + 2502]
array([0.048, 0.048, 0.045, ..., 0.051, nan, nan])
Meshes
To get the mesh corresponding to the map, use the mesh
attribute. The vertices are accessible using the v
property and the triangles using the t
property.
Maps corresponding to the mesh can be defined either for the vertices or for the triangles. They are accessible by name or by index.
>>> mesh = carto[0].mesh
>>> list(mesh)
['GroupID', 'Unipolar' ... , 'Scar', 'EML']
>>> mesh[0]
array([0, 7, 4, ..., 0, 0, 9])
>>> mesh['GroupID']
array([0, 7, 4, ..., 0, 0, 9])
To visualize a mesh and it's maps, you can call mesh.plot()
. This method requires pyvista. You can install the dependencies required for signal or mesh plotting using the viz option upon install.
Use the right and left arrow keys to cycle through the available maps.
Projecting and interpolating data
You can project points to a given mesh in a simple way:
>>> point_set = carto[0].points
>>> mesh = carto[0].mesh
>>> projected = point_set.project(mesh)
By default, this projects the points to the nearest cell on the mesh. Points more distant than a certain optional threshold (default 7 mm) will be removed in the process.
You can also interpolate the data from the scattered points to the mesh, using gaussian kernels. To do this, use the following syntax:
>>> mesh.interpolate(projected, 'lat', 'interpolated lat')
>>> mesh['interpolated lat']
pyvista_ndarray([-10.83790811, -3.72003399, -3.91094287, ...,
21.59490792, 4.93593996, 20.61467885])
This interpolates the lat
attribute from the projected
point set, creating a new map in the mesh
object called interpolated lat
, which contains the interpolated data.
Different options can be passed to the interpolate
method to customize the behavior of the algorithm. This function uses the pyvista
library.
Advanced interpolation
Geodesic distance metric
Ideally, one may want to project the points on the surface before using a geodesic distance metric to re-interpolate the scattered data. To do so, you can use the following commands:
>>> point_set = carto[0].points
>>> mesh = carto[0].mesh
>>> mesh.interpolate_points_geodesic(point_set, 'bipolar')
This type of interpolation requires the computation of the geodesic distance matrix from the scattered points projections to other nodes on the mesh, and is therefore more lengthy. We use the potpourri3D
library functions for this task. You can specify a custom weighing function for the interpolation. By default, the function uses a gaussian kernel approach.
Example using distance inverse weighing:
mesh.interpolate_points_geodesic(point_set, 'unipolar', weighing_function=lambda x: (1/x**2))
Cyclical interpolation, "early meets late"
Interpolation of scattered data from periodic signals requires specific attention. In particular, samples taken from the extreme end and beginning of a window of interest correspond to identical values. This is the so-called "early meets late" in Carto.
To circumvent this issue, we can pre-process our data by reprojecting it to the complex plane before interpolation, interpolating and reprojecting it back to the initial space. This is a preferred option for activation maps corresponding to reentries. To use this option, specify the cl parameter during the function call.
The cycle length of the tachycardia can be antomatically inferred from the scattered data (max - min). This is the behavior obtained when cl is set to 0.
Example:
# Cycle length is inferred from the point lat values
>>> mesh.interpolate_points_geodesic(point_set, 'lat', cl=0)
Missing features
- Importing from non-raw data Carto files
- Importing the
study.xml
files (especially to get the projected point positions and point tag list)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file carto_reader-0.0.12.tar.gz
.
File metadata
- Download URL: carto_reader-0.0.12.tar.gz
- Upload date:
- Size: 33.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ddf8646419f79c1f76977b8a708c3afa9ea7ceafb1ba520aaf225b77ed960cc |
|
MD5 | 7fd0c5672b4b082813a20692c1c86420 |
|
BLAKE2b-256 | b0a4ef97f016593c91f2e78a4043851f7be2c648bf99f5e9cf2346f5129a4796 |
File details
Details for the file carto_reader-0.0.12-py3-none-any.whl
.
File metadata
- Download URL: carto_reader-0.0.12-py3-none-any.whl
- Upload date:
- Size: 34.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fef37affb0918d621aa162b06056b4999c015a2e0d620229046548f80a07b97 |
|
MD5 | 106b69c950fd94f303f8f7a727a7159a |
|
BLAKE2b-256 | 6e99ea6f82b2c5acdba6cd2a7c9104d033ac30647e03add3c19bc4572346f1e1 |