Lidar data processing tools focused on Spanish PNOA datasets
Project description
CartoLidar
Lidar data processing tools focused on Spanish PNOA datasets
Herramientas para procesado de datos Lidar del PNOA
Lidar PNOA: https://pnoa.ign.es/el-proyecto-pnoa-lidar
Introduction
CartoLidar is a collection of tools to process lidar files ("las" and "laz") and generate useful information for forestry and natural environment management (dasoLidar variables, DLVs).
This project is in alpha version and, for now, only includes the "clidtwins" tool.
"clidtwins" searchs for similar areas to a reference one in terms of dasoLidar variables (DLVs).
This tool requires, as inputs, raster files with dasoLidar variables in asc format and a reference area (vector layer in shp or gpkg).
DLV: Lidar variables that describe or characterize forest or land cover structure.
CartoLidar es una colección de herramientas destinadas a procesar ficheros lidar ("las" y "laz") para clasificar los puntos mediante inteligencia artificial (GANs) y generar ficheros ráster con DEM y DLVs.
GAN (Generative Adversarial Networks): arquitectura de DL basada en redes neuronales en la que se optimiza simultanemante un discriminador y un generador para obtener imágenes verosímiles a partir de inputs que, en este caso, no son aleatorios (sino variables lidar).
DEM (Digital Elevation Model): modelos digitales de elevaciones (MDT, MDS)
DLV (DasoLidar Variables): variables dasométricas, que representan diversos aspectos de la estructura de una formación arbolada, arbustiva o de matorral como son la altura dominante, la cobertura, etc.
CartoLidar también incluye herramientas adicionales para generar otros productos de utilidad en selvicultura y otras areas de gestión del medio natural a partir de los ficheros ráster con las DLVs.
El proyecto está en fase alpha e incluye únicamente la herramienta adicional "clidtwins". Las herramientas de procesado de ficheros Lidar (clasificación de puntos, generación de DEM y DLVs)) se incorporará a github a partir del cuarto trimestre de 2022.
La herramienta clidtwins está destinada a buscar zonas similares a una(s) de referencia en términos de determinadas variables dasoLidar (DLVs). Clidtwins requiere disponer de ráster(s) con variables dasoLidar (en formato asc) y de una capa vectorial con la(s) zona(s) de referencia en formato shp o gpkg.
+ info: Read the Docs - cartolidar (página en construcción)
Install
- Official version from pypi - cartolidar:
pip install cartolidar
or (in case you are working through a proxy server):
pip install cartolidar --proxy https://user:password@proxyserver:port
- Development version from github - cartolidar:
You can download the zip version, uncompress it somewhere, i.e.:
C:\users\yourUser\Downloads\cartolidar-main\
That folder contains a setup.py file (and the other components of the project) and you can install it for your python environment or run that version from that directory:
- Installation of downloaded files:
cd C:\users\yourUser\Downloads\cartolidar-main\
pip install .
- Runing downloaded version from github:
cd C:\users\yourUser\Downloads\cartolidar-main\
python -m cartolidar [options]
Requeriments
cartolidar requires Python 3.7 or higher.
See other package requirements in requirements.txt.
Numba requirement (0.53.0) is optional but advisable for speeding up some tasks.
Use
Command line (cmd or bash)
a) Run cartolidar package and select a tool from the main menu (or with the -o flag):
python -m {path-to-cartolidar/}cartolidar [options]
It starts the main menu with the avaliable tools (or executes the selected option if -o flag is used).
b) Run directly a tool, without displaying the main menu:
python {path-to-cartolidar/clidtools/}qlidtwins.py [options]
This alpha version includes only qlidtwins tools.
Before runing a tool it's necesary to prepare the required inputs for that tool.
See required inputs and examples below.
Hay dos opciones para ejecutar una herramienta de clidtools en linea de comandos:
a) Lanzar el paquete cartolidar para mostrar el menu principal y seleccionar una herramienta (o indicar la herramienta con la opción -o).
b) Lanzar directamente la herramienta.
Inicialmente solo está disponible la herramienta qlidtwins.
Antes de ejecutar una herramienta se deben de preparar los inputs que requiere esa herramienta.
Ver mas abajo info sobre los inputs que require cada herramienta (normalmente capas vectoriales o raster) y algunos ejemplos.
[options] for cartolidar package
cartolidar general options: -h, --help show this help message and exit -V, --version show program's version number and exit -v, --verbose set verbosity level [default: False] -H toolHelp show help for a cartolidar tool. toolHelp: qlidtwins / clidmerge / etc. By defaut, help is shown without extended args. -I, --menuInteracivo Runs in interactive mode. -e Changes -H behaviour to extended arguments. -o menuOption 0. Show main menu; 1. qlidtwins: buscar o verificar zonas analogas a una de referencia (con un determinado patron dasoLidar); 2. qlidmerge: integrar ficheros asc de 2x2 km en una capa tif unica (componer mosaico: merge). Default: 0 You can show tool-specific help with -H flag. Example: python -m cartolidar -H qlidtwins
[options] for qlidtwins.py module
usage: qlidtwins.py [-h] [-V] [-v] [-q] [-e] [-a MAINACTION] [-i RUTAASCRAIZBASE] [-m RUTACOMPLETAMFE] [-f CARTOMFECAMPOSP] [-p PATRONVECTRNAME] [-l PATRONLAYERNAME] [-c PATRONFIELDNAME] [-t TESTEOVECTRNAME] [-y TESTEOLAYERNAME] [--idProceso IDPROCESO] [listTxtDasoVars [listTxtDasoVars ...]] positional arguments: listTxtDasoVars Lista de variables dasoLidar: Secuencia de cadenas de texto (uno por variable), del tipo: "texto1", "texto2", etc. de forma que: Opcion a: cada texto es un identificador de DLV. Ejemplo: alt95 fcc05 fcc03 (no llevan comas ni comillas) Opcion b: cada texto es una secuencia de cinco elementos separados por comas del tipo: "FileTypeId, NickName, RangoLinf, RangoLsup, NumClases, Movilidad(0-100), Ponderacion(0-10)" Ejemplo: ["alt95,hDom,0,36,18,40,10", "fcc05,FCC,0,100,5,30,8"] [default: ['alt95,Alt95,0,36,18,40,10', 'fcc3m,Fcc3m,0,100,5,25,8', 'cob050_200cm,CobMt,0,100,5,35,5', 'MFE25,MFE25,0,255,255,0,0', 'TMasa,TMasa,0,255,255,0,0']] optional main arguments: -h, --help show this help message and exit -V, --version show program's version number and exit -v, --verbose set verbosity level [default: 2] -q, --quiet Activates quiet mode (mude, not output). Default: 0 -e, --extraArguments Activates extra arguments in command line. Default: False -I, --menuInteracivo Runs in interactive mode. -a MAINACTION Accion a ejecutar: 1. Verificar analogia con un determinado patron dasoLidar; 2. Generar raster con presencia de un determinado patron dasoLidar. Default: 1 -i RUTAASCRAIZBASE Ruta (path) en la que estan los ficheros de entrada con las variables dasolidar. Default: data/asc/PuenteDuero -p PATRONVECTRNAME Nombre del poligono de referencia (patron) para caracterizacion dasoLidar. Default: data/ref/clid_PuenteDuero.gpkg -l PATRONLAYERNAME Nombre del layer del gpkg (en su caso) de referencia (patron) para caracterizacion dasoLidar. Default: vectorPatron -c PATRONFIELDNAME Nombre del campo de la capa de referencia (patron) con el tipo de masa para caracterizacion dasoLidar. Default: TM -t TESTEOVECTRNAME Nombre del poligono de contraste (testeo) para verificar su analogia con el patron dasoLidar. Default: data/ref/clid_PuenteDuero.gpkg -y TESTEOLAYERNAME Nombre del layer del gpkg (en su caso) de contraste (testeo) para verificar su analogia con el patron dasoLidar. Default: vectorTesteo -m RUTACOMPLETAMFE Nombre (con ruta y extension) del fichero con la capa MFE. Default: data/mfe/PuenteDuero/MFE_PuenteDuero.shp -f CARTOMFECAMPOSP Nombre del campo con el codigo numerico de la especie principal o tipo de bosque en la capa MFE. Default: SP1 --idProceso IDPROCESO Numero aleatorio para identificar el proceso que se esta ejecutando (se asigna automaticamente; no usar este argumento) See optional extra arguments with -h -e flags or in [Read the Docs - cartolidar](http://cartolidar-docs.readthedocs.io/en/latest/).
Python code
You can import packages, modules, classes of functions from a script.py or within the python interactive interpreter:
import cartolidar
from cartolidar import clidtools
from cartolidar.clidtools import clidtwins
from cartolidar.clidtools.clidtwins import DasoLidarSource
To execute module qlidtwins.py from python code:
from cartolidar import qlidtwins
In this case, there are no options: it runs with qlidtwins.cfg configuration (if exists) or default configuration.
Required inputs for qlidtwins or clidtwins
See Read the Docs - cartolidar for details.
Raster input files
This tool requires raster files ("asc" format) with dasoLidarVariables that are used to look for areas similar to a reference one.
These files have to be placed in the path indicated with -i flag.
Each raster file has a dasoLidar variable (DLV): one file <=> one DLV.
The raster files have to be named as: XXX_YYYY_*IdFileType*.asc where:
- XXX, YYYY are UTM coordinates (miles) that identifies the location (the block).
- XXX, YYYY are usually the upper-left corner of a 2x2 km square area
- *IdFileType* is any text that includes a DVL identifier (like alt95, fcc05, etc.).
Example: 318_4738_alt95.asc and 320_4738_alt95.asc are two files with alt95 variable (blocks: 318_4738 and 320_4738).
If we want to process two blocks (318_4738 and 320_4738) with two DLVs (e.g. alt95 and fcc05), we need these files: 318_4738_alt95.asc, 318_4738_fcc05.asc, 320_4738_alt95.asc, 320_4738_fcc05.asc
The project includes several raster files from Valladolid (data/asc/PuenteDuero/348_4600_2017_alt95.asc, etc.) that can be used as example of use.
Reference area
The reference area is a vector file (name with path) with one or several polygons (shp or gpkg).
Path: absolute path or relative path refered to working dir (e.g. the one from where the tools is called).
Indicate this information with -p, -l and -c flags (-l only for gpkg; not for shp)
The cartolidar project includes a vector layer from Valladolid (data/ref/clid_PuenteDuero.gpkg) that can be used as example of use.
Aditional inputs
It's also advisable to include a layer with forest type codes (forest-type = combination of forest species).
- This forest-type layer is a vector layer (shp or gpkg)
- It has to include one field that has the forest type code (type int).
- Spanish Forest Map (MFE) is usefull for this function. Requires a numeric field wuth forest-type codes.
Outputs
Ouput files are placed in a subdirectory of the raster input files directory.
Default name of this subdir is dasoLayers (can be changed with -S flag).
Use example with python code
Procedure:
- Import package (or Class) and instantiate DasoLidarSource Class:
from cartolidar.clidtools.clidtwins import DasoLidarSource
myDasolidar = DasoLidarSource()
- Delimit the prospecting area (optional):
myDasolidar.setRangeUTM(
LCL_marcoCoordMiniX=348000,
LCL_marcoCoordMaxiX=350000,
LCL_marcoCoordMiniY=4598000,
LCL_marcoCoordMaxiY=4602000,
)
- Search for dasoLidar files in the prospecting zone (if any):
First argument (LCL_listLstDasoVars) is a string with a sequence of DLV identifiers and second one (LCL_rutaAscRaizBase) is a path to look for the files with those DLV ids.
myDasolidar.searchSourceFiles(
LCL_listLstDasoVars='Alt95,Fcc05,Fcc03',
LCL_rutaAscRaizBase='C:/myAscFiles',
)
This method creates a property named "inFilesListAllTypes":
myDasolidar.inFilesListAllTypes
It is a list that includes, for every DLV, one list of found files corresponding to that DLV. It only includes files of blocks that have all the file types (one file type = one DLV). Every file tuple consist of a file path and file name.
- Create a raster (Tiff) file from the DLV found files:
The createMultiDasoLayerRasterFile method requires the name (with path) of the forest type or land cover type vector layer (e.g. Spanish Forest Map -MFE25-) and the name of the field (type int) with the forest or land cover type identifier (e.g. main species code).
myDasolidar.createMultiDasoLayerRasterFile(
LCL_rutaCompletaMFE='C:/mfe25/24_mfe25.shp',
LCL_cartoMFEcampoSp='SP1',
)
- Analyze the ranges of every DLV in the reference area:
The analyzeMultiDasoLayerRasterFile method requires the name (with path) of the vector file with the reference polygon for macthing (shp or gpkg). If it is ageopackage, the layer name is also required.
myDasolidar.analyzeMultiDasoLayerRasterFile(
LCL_patronVectrName='C:/vector/CorralesPlots.gpkg,
LCL_patronLayerName='plot01Quercus',
)
- Create new Tiff files with similar zones and proximity to reference one (patron):
myDasolidar.generarRasterCluster()
- After carrying out steps 5 and 6 for several reference ones (example 1, 2, 3):
listaTM = [1, 2, 3]
myDasolidar.asignarTipoDeMasaConDistanciaMinima(listaTM)
to be continued...
Ayuda Markdown de github Ayuda Markdown de github Ayuda Markdown de markdownguide
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cartolidar-0.0a14.tar.gz
.
File metadata
- Download URL: cartolidar-0.0a14.tar.gz
- Upload date:
- Size: 999.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a90ef3c02e1f135d6ec7267770ca43052fee007c7bf5dfee8f851e2de6eeac3 |
|
MD5 | 969b071ea4b1f6b7f4cd9bfbcbd24e7d |
|
BLAKE2b-256 | 15fe3dabff1df8a27e21cdfc2106c5d4f2d95e3bef6b0859c39bc384bdae655f |
File details
Details for the file cartolidar-0.0a14-py3-none-any.whl
.
File metadata
- Download URL: cartolidar-0.0a14-py3-none-any.whl
- Upload date:
- Size: 1.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 509c48c5c61391ee5b457898fcd344bf08f45b3f7ee266aeb2d44d8e29e507bf |
|
MD5 | f6e20a1e86226afbe4a6ec5df200e812 |
|
BLAKE2b-256 | ac7f32241c67e9af0eaae1afe74ce5584f54c4d6f26f3b64c2d10168a0fd41d1 |