Skip to main content

Open-Source background removal framework

Project description

✂️ CarveKit ✂️


The higher resolution images from the picture above can be seen in the docs/imgs/compare/ and docs/imgs/input folders.

📙 README Language

Russian English

📄 Description:

Automated high-quality background removal framework for an image using neural networks.

🎆 Features:

  • High Quality
  • Batch Processing
  • NVIDIA CUDA and CPU processing
  • Easy inference
  • 100% remove.bg compatible FastAPI HTTP API
  • Removes background from hairs
  • Easy integration with your code

⛱ Try yourself on Google Colab

⛓️ How does it work?

It can be briefly described as

  1. The user selects a picture or a folder with pictures for processing
  2. The photo is preprocessed to ensure the best quality of the output image
  3. Using machine learning technology, the background of the image is removed
  4. Image post-processing to improve the quality of the processed image

🎓 Implemented Neural Networks:

🖼️ Image pre-processing and post-processing methods:

🔍 Preprocessing methods:

  • none - No preprocessing methods used.

They will be added in the future.

✂ Post-processing methods:

  • none - No post-processing methods used.
  • fba (default) - This algorithm improves the borders of the image when removing the background from images with hair, etc. using FBA Matting neural network. This method gives the best result in combination with u2net without any preprocessing methods.

🏷 Setup for CPU processing:

  1. pip install carvekit --extra-index-url https://download.pytorch.org/whl/cpu

The project supports python versions from 3.8 to 3.10.4

🏷 Setup for GPU processing:

  1. Make sure you have an NVIDIA GPU with 8 GB VRAM.
  2. Install CUDA Toolkit and Video Driver for your GPU
  3. pip install carvekit --extra-index-url https://download.pytorch.org/whl/cu113

The project supports python versions from 3.8 to 3.10.4

🧰 Interact via code:

If you don't need deep configuration or don't want to deal with it

import torch
from carvekit.api.high import HiInterface

interface = HiInterface(batch_size_seg=5, batch_size_matting=1,
                               device='cuda' if torch.cuda.is_available() else 'cpu',
                               seg_mask_size=320, matting_mask_size=2048)
images_without_background = interface(['./tests/data/cat.jpg'])                               
cat_wo_bg = images_without_background[0]
cat_wo_bg.save('2.png')
                   

If you want control everything

import PIL.Image

from carvekit.api.interface import Interface
from carvekit.ml.wrap.fba_matting import FBAMatting
from carvekit.ml.wrap.u2net import U2NET
from carvekit.pipelines.postprocessing import MattingMethod
from carvekit.pipelines.preprocessing import PreprocessingStub
from carvekit.trimap.generator import TrimapGenerator

u2net = U2NET(device='cpu',
              batch_size=1)

fba = FBAMatting(device='cpu',
                 input_tensor_size=2048,
                 batch_size=1)

trimap = TrimapGenerator()

preprocessing = PreprocessingStub()

postprocessing = MattingMethod(matting_module=fba,
                               trimap_generator=trimap,
                               device='cpu')

interface = Interface(pre_pipe=preprocessing,
                      post_pipe=postprocessing,
                      seg_pipe=u2net)

image = PIL.Image.open('tests/data/cat.jpg')
cat_wo_bg = interface([image])[0]
cat_wo_bg.save('2.png')
                   

🧰 Running the CLI interface:

  • python3 -m carvekit -i <input_path> -o <output_path> --device <device>

Explanation of args:

Usage: carvekit [OPTIONS]

  Performs background removal on specified photos using console interface.

Options:
  -i ./2.jpg                   Path to input file or dir  [required]
  -o ./2.png                   Path to output file or dir
  --pre none                   Preprocessing method
  --post fba                   Postprocessing method.
  --net u2net                  Segmentation Network
  --recursive                  Enables recursive search for images in a folder
  --batch_size 10              Batch Size for list of images to be loaded to
                               RAM

  --batch_size_seg 5           Batch size for list of images to be processed
                               by segmentation network

  --batch_size_mat 1           Batch size for list of images to be processed
                               by matting network

  --seg_mask_size 320          The size of the input image for the
                               segmentation neural network.

  --matting_mask_size 2048     The size of the input image for the matting
                               neural network.

  --device cpu                 Processing Device.
  --help                       Show this message and exit.

📦 Running the Framework / FastAPI HTTP API server via Docker:

Using the API via docker is a fast and non-complex way to have a working API.
This HTTP API is 100% compatible with remove.bg API clients.

Important Notes:

  1. Docker image has default front-end at / url and FastAPI backend with docs at /docs url.

  2. Authentication is enabled by default.
    Token keys are reset on every container restart if ENV variables are not set.
    See docker-compose.<device>.yml for more information.
    You can see your access keys in the docker container logs.

  3. There are examples of interaction with the API.
    See docs/code_examples/python for more details

🔨 Creating and running a container:

  1. Install docker-compose
  2. Run docker-compose -f docker-compose.cpu.yml up -d # For CPU Processing
  3. Run docker-compose -f docker-compose.cuda.yml up -d # For GPU Processing

Also you can mount folders from your host machine to docker container and use the CLI interface inside the docker container to process files in this folder.

Building a docker image on Windows is not officially supported. You can try using WSL2 or "Linux Containers Mode" but I haven't tested this.

☑️ Testing

☑️ Testing with local environment

  1. pip install -r requirements_test.txt
  2. pytest

☑️ Testing with Docker

  1. Run docker-compose -f docker-compose.cpu.yml run carvekit_api pytest # For testing on CPU
  2. Run docker-compose -f docker-compose.cuda.yml run carvekit_api pytest # For testing on GPU

👪 Credits: More info

💵 Support

You can thank me for developing this project and buy me a small cup of coffee ☕

Blockchain Cryptocurrency Network Wallet
Ethereum ETH / USDT / USDC / BNB / Dogecoin Mainnet 0x7Ab1B8015020242D2a9bC48F09b2F34b994bc2F8
Ethereum ETH / USDT / USDC / BNB / Dogecoin BSC (Binance Smart Chain) 0x7Ab1B8015020242D2a9bC48F09b2F34b994bc2F8
Bitcoin BTC - bc1qmf4qedujhhvcsg8kxpg5zzc2s3jvqssmu7mmhq
ZCash ZEC - t1d7b9WxdboGFrcVVHG2ZuwWBgWEKhNUbtm
Tron TRX - TH12CADSqSTcNZPvG77GVmYKAe4nrrJB5X
Monero XMR Mainnet 48w2pDYgPtPenwqgnNneEUC9Qt1EE6eD5MucLvU3FGpY3SABudDa4ce5bT1t32oBwchysRCUimCkZVsD1HQRBbxVLF9GTh3
TON TON - EQCznqTdfOKI3L06QX-3Q802tBL0ecSWIKfkSjU-qsoy0CWE

📧 Feedback

I will be glad to receive feedback on the project and suggestions for integration.

For all questions write: farvard34@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

carvekit_colab-4.0.4.tar.gz (43.3 kB view details)

Uploaded Source

Built Distribution

carvekit_colab-4.0.4-py3-none-any.whl (57.2 kB view details)

Uploaded Python 3

File details

Details for the file carvekit_colab-4.0.4.tar.gz.

File metadata

  • Download URL: carvekit_colab-4.0.4.tar.gz
  • Upload date:
  • Size: 43.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for carvekit_colab-4.0.4.tar.gz
Algorithm Hash digest
SHA256 8dda3e98aba77bc8f33e7eddb8ba157cbe5930bc151e0e64b441d275e71bdf87
MD5 f64d833189e899fa7826aa26cf83346e
BLAKE2b-256 47efdc5bc089f96f33bc1177bd9c245ea044c2cc3ef18a5cf8d687394655c2bf

See more details on using hashes here.

File details

Details for the file carvekit_colab-4.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for carvekit_colab-4.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f39226ba6635e5bb9f1c309fc2ba70a34976fb7506a37043a173cea02a8f88aa
MD5 8d6ff5d7bce908eac6b17d9cd724bc03
BLAKE2b-256 34f1836af7a99c5c26d4649245452b1a91d441024ef463a4b9a6fb5a070c4ee6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page