Skip to main content

No project description provided

Project description

Case Attribute Discovery

case-attribute-discovery version

Python package to discover case attributes from an event log and their value distribution (stochastic if discrete, probability distribution if continuous).

Example of use

import pandas as pd

from case_attribute_discovery.config import DEFAULT_CSV_IDS
from case_attribute_discovery.discovery import discover_case_attributes

# Read event log
event_log = pd.read_csv("path_to_event_log.csv")

# Simple call
case_attributes = discover_case_attributes(
    event_log=event_log,
    log_ids=DEFAULT_CSV_IDS
)

# Call specifying the columns to not take into account for case attribute analysis
case_attributes = discover_case_attributes(
    event_log=event_log,
    log_ids=DEFAULT_CSV_IDS,
    avoid_columns=[
        DEFAULT_CSV_IDS.case, DEFAULT_CSV_IDS.activity,
        DEFAULT_CSV_IDS.start_time, DEFAULT_CSV_IDS.end_time
    ]
)

# Call specifying a confidence (or noise) threshold to allow a certain noise 
# in the variability of the attribute along the trace: 
#  - For each trace, the confidence of the most frequent value is computed (i.e. 
#  the % of activity instances from that trace with that same value). For example, 
#  a trace with 8 activity instances with 'amount'=100 and 2 with 'amount'=150 
#  will have a confidence of 0.8.
#  - The average confidence in all traces must be higher or equal to the specified
#  one to consider that column a case attribute.

case_attributes = discover_case_attributes(
    event_log=event_log,
    log_ids=DEFAULT_CSV_IDS,
    confidence_threshold=0.9
)

To see a more detailed example of use, and the format of the output, you can check this test file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

case_attribute_discovery-0.1.8.tar.gz (7.1 kB view details)

Uploaded Source

Built Distribution

case_attribute_discovery-0.1.8-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file case_attribute_discovery-0.1.8.tar.gz.

File metadata

File hashes

Hashes for case_attribute_discovery-0.1.8.tar.gz
Algorithm Hash digest
SHA256 a66ed6192c11a2c2407ab51312f2b7485cc4b9e6c7ea1c939c8d6d2fb443733f
MD5 c9328466973059771ce0eb7f66066729
BLAKE2b-256 033628f2bda7d222c53f4b3c15be87db417b9716fe17d9ba047660228dfd4702

See more details on using hashes here.

File details

Details for the file case_attribute_discovery-0.1.8-py3-none-any.whl.

File metadata

File hashes

Hashes for case_attribute_discovery-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 1c66d8c3ae13e8e4ad2beb376cc60fe690e3f92944196c5dcc1ed57ece13f173
MD5 0ab1e394dceb5fdf532b0d37a24dc57e
BLAKE2b-256 1d9cf4fa18c43b52c87b9e340fab0c970e01a5c385b1d3c408cdb81afd193fd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page