Skip to main content

Computational Adjoint-Based Shape Optimization and Optimal Control Software

Project description

https://raw.githubusercontent.com/sblauth/cashocs/main/logos/cashocs_banner.jpg https://img.shields.io/pypi/v/cashocs?style=flat-square https://img.shields.io/conda/vn/conda-forge/cashocs?style=flat-square https://img.shields.io/pypi/pyversions/cashocs?style=flat-square https://img.shields.io/badge/DOI-10.5281%2Fzenodo.4035939-informational?style=flat-square https://img.shields.io/pypi/l/cashocs?color=informational&style=flat-square https://img.shields.io/pypi/dm/cashocs?color=informational&style=flat-square

https://img.shields.io/github/actions/workflow/status/sblauth/cashocs/tests.yml?branch=main&label=tests&style=flat-square https://img.shields.io/codecov/c/gh/sblauth/cashocs?color=brightgreen&style=flat-square https://img.shields.io/codacy/grade/4debea4be12c495391e1310025851e55?style=flat-square https://readthedocs.org/projects/cashocs/badge/?version=latest&style=flat-square https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square

cashocs is a finite element software for the automated solution of shape optimization and optimal control problems. It is used to solve problems in fluid dynamics and multiphysics contexts. Its name is an acronym for computational adjoint-based shape optimization and optimal control software and the software is written in Python.

Introduction

cashocs is based on the finite element package FEniCS and uses its high-level unified form language UFL to treat general PDE constrained optimization problems, in particular, shape optimization and optimal control problems.

For some applications and further information about cashocs, we also refer to the website Fluid Dynamical Shape Optimization with cashocs.

Note, that we assume that you are (at least somewhat) familiar with PDE constrained optimization and FEniCS. For a introduction to these topics, we can recommend the textbooks

However, the cashocs tutorial also gives many references either to the underlying theory of PDE constrained optimization or to relevant demos and documentation of FEniCS.

An overview over cashocs and its capabilities can be found in Blauth - cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software and Blauth - Version 2.0 - cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software. Moreover, note that the full cashocs documentation is available at https://cashocs.readthedocs.io.

Installation

Via conda-forge

cashocs is available via the anaconda package manager, and you can install it with

conda install -c conda-forge cashocs

Alternatively, you might want to create a new, clean conda environment with the command

conda create -n <ENV_NAME> -c conda-forge cashocs

where <ENV_NAME> is the desired name of the new environment.

Manual Installation

  • First, install FEniCS, version 2019.1. Note that FEniCS should be compiled with PETSc and petsc4py.

  • Then, install meshio, with a h5py version that matches the HDF5 version used in FEniCS, and matplotlib. The version of meshio should be at least 4, but for compatibility it is recommended to use meshio 4.4.

  • You might also want to install Gmsh, version 4.8 or later. cashocs does not necessarily need this to work properly, but it is required for the remeshing functionality.

  • You can install cashocs via the PYPI as follows

    pip3 install cashocs
  • You can install the newest (development) version of cashocs with

    pip3 install git+https://github.com/sblauth/cashocs.git
  • To get the latest (development) version of cashocs, clone this repository with git and install it with pip

    git clone https://github.com/sblauth/cashocs.git
    cd cashocs
    pip3 install .

Usage

The complete cashocs documentation is available here https://cashocs.readthedocs.io. For a detailed introduction, see the cashocs tutorial. The python source code for the demo programs is located inside the “demos” folder.

Citing

If you use cashocs for your research, please cite the following paper

cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software
Sebastian Blauth
SoftwareX, Volume 13, 2021
https://doi.org/10.1016/j.softx.2020.100646

or use the following bibtex entry

@Article{Blauth2021cashocs,
  author   = {Sebastian Blauth},
  journal  = {SoftwareX},
  title    = {{cashocs: A Computational, Adjoint-Based Shape Optimization and Optimal Control Software}},
  year     = {2021},
  issn     = {2352-7110},
  pages    = {100646},
  volume   = {13},
  doi      = {https://doi.org/10.1016/j.softx.2020.100646},
  keywords = {PDE constrained optimization, Adjoint approach, Shape optimization, Optimal control},
}

For more details on how to cite cashocs please take a look at https://cashocs.readthedocs.io/en/stable/about/citing/.

License

cashocs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

cashocs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with cashocs. If not, see https://www.gnu.org/licenses/.

Contact / About

I’m Sebastian Blauth, a researcher at Fraunhofer ITWM. I started developing cashocs during my PhD studies and have further developed and refined it as part of my employment at Fraunhofer ITWM. If you have any questions / suggestions / feedback, etc., you can contact me via sebastian.blauth@itwm.fraunhofer.de. For more information, visit my website at https://sblauth.github.io/.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cashocs-2.3.0.tar.gz (278.3 kB view details)

Uploaded Source

Built Distribution

cashocs-2.3.0-py3-none-any.whl (428.9 kB view details)

Uploaded Python 3

File details

Details for the file cashocs-2.3.0.tar.gz.

File metadata

  • Download URL: cashocs-2.3.0.tar.gz
  • Upload date:
  • Size: 278.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for cashocs-2.3.0.tar.gz
Algorithm Hash digest
SHA256 7c8e7e7efcbca67c1919ef50b3aca66f1f685c7700e5ab9521af760a32142fbd
MD5 10fd43a8dcb9f9ba88eed3254e2304ce
BLAKE2b-256 41bebe8348e26b4c40a87915495c8df403b4e46f9320027cc5d718f6d271776f

See more details on using hashes here.

Provenance

The following attestation bundles were made for cashocs-2.3.0.tar.gz:

Publisher: publish.yml on sblauth/cashocs

Attestations:

File details

Details for the file cashocs-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: cashocs-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 428.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for cashocs-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ded6b2496c4f942066295cb1bc7c38eea276cd3ecc7a3e3291a4c019c1897381
MD5 f02798a3c1cd7518fc4358783a3279c9
BLAKE2b-256 ae8f0549436d5b40a322ea461d2e87bee799aad4578d9631e017d801c8949b83

See more details on using hashes here.

Provenance

The following attestation bundles were made for cashocs-2.3.0-py3-none-any.whl:

Publisher: publish.yml on sblauth/cashocs

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page