A comprehensive Python package for type casting, conversion, and validation with advanced features
Project description
Casting Expert
A comprehensive Python package for type casting, string-to-dictionary conversion, and data validation with advanced features like type inference, serialization, and schema validation.
🌟 Features
-
String to Dictionary Conversion
- Multiple format support (JSON, Query String, Key-Value, YAML-like)
- Auto-format detection
- Nested structure support
-
Type Inference
- Automatic type detection and conversion
- Support for common data types (int, float, bool, datetime)
- List parsing (comma-separated values)
- Nested type inference
-
Data Serialization
- Convert dictionaries to various string formats
- Pretty printing options
- Customizable delimiters and formatting
-
Advanced Validation
- Nested schema validation
- Custom error messages
- Type checking
- Pattern matching
- Range validation
- Length constraints
- Custom validators
- Field transformations
- Conditional validation
📦 Installation
pip install casting-expert
🚀 Quick Start
Basic Usage
from casting_expert import parse_string_to_dict
# Auto-detect format and convert
data = parse_string_to_dict('{"name": "John", "age": 30}')
Type Inference
from casting_expert import TypeInference
# Infer types for single values
value1 = TypeInference.infer_type("123") # Returns int(123)
value2 = TypeInference.infer_type("true") # Returns bool(True)
value3 = TypeInference.infer_type("2024-01-01") # Returns datetime object
value4 = TypeInference.infer_type("1.23") # Returns float(1.23)
value5 = TypeInference.infer_type("a,b,c") # Returns ["a", "b", "c"]
# Infer types for entire dictionary
data = {
"id": "123",
"active": "true",
"score": "98.6",
"tags": "python,coding,dev"
}
typed_data = TypeInference.infer_types_in_dict(data)
# Result:
# {
# "id": 123,
# "active": True,
# "score": 98.6,
# "tags": ["python", "coding", "dev"]
# }
Serialization
from casting_expert import DictSerializer
data = {
"name": "John",
"age": 30,
"scores": [95, 87, 91]
}
# Convert to different formats
json_str = DictSerializer.to_json(data, pretty=True)
# {
# "name": "John",
# "age": 30,
# "scores": [95, 87, 91]
# }
query_str = DictSerializer.to_query_string(data, prefix='?')
# ?name=John&age=30&scores=[95,87,91]
kv_str = DictSerializer.to_key_value(data, delimiter=': ')
# name: John
# age: 30
# scores: [95, 87, 91]
yaml_str = DictSerializer.to_yaml_like(data)
# name: John
# age: 30
# scores:
# - 95
# - 87
# - 91
Validation
Basic Validation
from casting_expert import DictValidator
# Create validation schema
schema = {
"name": DictValidator.create_field(
str,
required=True,
min_length=2,
pattern=r'^[A-Za-z\s]+$',
error_messages={
"pattern": "Name should contain only letters and spaces",
"required": "Name is required"
}
),
"age": DictValidator.create_field(
int,
min_value=0,
max_value=150,
error_messages={
"min_value": "Age cannot be negative",
"max_value": "Age cannot be greater than 150"
}
),
"email": DictValidator.create_field(
str,
required=True,
pattern=r'^[\w\.-]+@[\w\.-]+\.\w+$',
error_messages={"pattern": "Invalid email format"}
)
}
# Validate data
data = {
"name": "John Doe",
"age": 30,
"email": "john@example.com"
}
result = DictValidator.validate(data, schema)
if result.is_valid:
print("Validation passed!")
else:
for issue in result.issues:
print(f"{issue.severity}: {issue.field} - {issue.message}")
Nested Validation
# Create nested schema
address_schema = {
"street": DictValidator.create_field(
str,
required=True,
min_length=5,
error_messages={"min_length": "Street name is too short"}
),
"city": DictValidator.create_field(
str,
required=True,
choices=["New York", "Los Angeles", "Chicago"]
),
"zip_code": DictValidator.create_field(
str,
pattern=r'^\d{5}(-\d{4})?$',
error_messages={"pattern": "Invalid ZIP code format"}
)
}
# Main schema with nested address
schema = {
"name": DictValidator.create_field(str, required=True),
"address": DictValidator.create_field(
dict,
required=True,
schema=address_schema
)
}
# Validate nested data
data = {
"name": "John Doe",
"address": {
"street": "123 Main St",
"city": "New York",
"zip_code": "12345"
}
}
result = DictValidator.validate(data, schema)
Custom Validators and Transformations
# Custom validator
def validate_domain(email: str) -> bool:
return not email.endswith(('.temp', '.test'))
email_field = DictValidator.create_field(
str,
pattern=r'^[\w\.-]+@[\w\.-]+\.\w+$'
).add_validator(
validate_domain,
"Temporary email domains are not allowed"
)
# Transform before validation
username_field = DictValidator.create_field(
str
).add_transform(
lambda x: x.lower().strip()
)
# Combined schema
schema = {
"email": email_field,
"username": username_field
}
🧪 Testing
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
📝 Common Use Cases
1. Form Data Processing
from casting_expert import parse_string_to_dict, TypeInference, DictValidator
# Process form data
form_data = "name=John+Doe&age=30&email=john@example.com"
data = parse_string_to_dict(form_data, format='query')
typed_data = TypeInference.infer_types_in_dict(data)
# Validate
schema = {
"name": DictValidator.create_field(str, required=True),
"age": DictValidator.create_field(int, min_value=0),
"email": DictValidator.create_field(str, pattern=r'^[\w\.-]+@[\w\.-]+\.\w+$')
}
result = DictValidator.validate(typed_data, schema)
2. Configuration File Processing
# Process YAML-like config
config_str = """
database:
host: localhost
port: 5432
username: admin
settings:
debug: true
max_connections: 100
"""
config = parse_string_to_dict(config_str, format='yaml_like')
typed_config = TypeInference.infer_types_in_dict(config)
3. API Response Validation
# Define API response schema
response_schema = {
"status": DictValidator.create_field(
str,
choices=["success", "error"]
),
"data": DictValidator.create_field(
dict,
nullable=True,
schema={
"id": DictValidator.create_field(int, required=True),
"name": DictValidator.create_field(str, required=True)
}
),
"message": DictValidator.create_field(str, required=True)
}
# Validate API response
response_data = {
"status": "success",
"data": {
"id": 123,
"name": "John"
},
"message": "Data retrieved successfully"
}
result = DictValidator.validate(response_data, response_schema)
📄 License
MIT License - feel free to use this package in your projects.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
📬 Contact
- Issue Tracker: GitHub Issues
- Source Code: GitHub
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
casting_expert-0.1.4.tar.gz
(10.3 kB
view details)
Built Distribution
File details
Details for the file casting_expert-0.1.4.tar.gz
.
File metadata
- Download URL: casting_expert-0.1.4.tar.gz
- Upload date:
- Size: 10.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5f2cb47d4c598a09f9f59d7b39970bccfd29edc728c32287f8eecbca8bee7fa1 |
|
MD5 | ea27a059c47c8b88048c5ea6277bc981 |
|
BLAKE2b-256 | dac8cf8940dcb79e408def0a5b4d2fbaac80fa32f627c4dc8586e73ab2c82ea5 |
File details
Details for the file casting_expert-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: casting_expert-0.1.4-py3-none-any.whl
- Upload date:
- Size: 13.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c35242b04723167f3607078738a36d5426881494c1c978ca7b4e54c1c90d4875 |
|
MD5 | 2b98ee684ab69bac5e9c7f180e5031d1 |
|
BLAKE2b-256 | e70f2e0a78e78b74626e1ebb1217e62692040a7a239aa97fdd70e3c826280a8f |