Skip to main content

No project description provided

Project description

CatMod (Categorical classification Model)

Short introduction

  • In a modern word that required fast robust and simple development process with Machine Learning, AI and Deep Learning, there are countless of projects require Natural Language Processing (NLP) classification problems such as Commodity Classification, Company Type Classification, Food Type classification, etc.
    More and more people want to train, test and deploy NLP classification model without having to know the background of advanced in programming and AI knowledge.
  • This Framework will allow everyone to train, test and save and load their own model and deploy it wherever they want with some simple lines of code.

Virtual Enviroment / Dependencies

  • It is recommended to create a vitual enviroment for your project when using CatMod as it will download and install packages and dependencies that might conflict with your dependencies on your machine.
  • If you don't mind about the version of the libraries listed in the requirements.txt you can leave it as it is.

How to use

  • You can you pip install to download the project down to your computer.
pip install cat-mod
  • Import CatMod in your python file.
from cat_mod import CatMod
cat = CatMod('[your_GloVe_file_path]')

e.g.

file_path = 'C:/User/Desktop/glove.6B.50d.txt'
cat = CatMod(glove_file = file_path)
file_path = 'Machintosh HD/Users/yourName/Desktop/glove.6B.50d.txt'
cat = CatMode(glove_file = file_path)

Training Process

This Framework will allow you to input a .csv file with many columns but you have to specify 2 columns corresponding to values (X) and targets (Y).

Let's say you have a csv file product.csv with columns look like this

company name product name category
... ... ...
  • You can use 1 out of 2 ways to load the csv file and load the pre-defined model into the instance.
cat.load_csv('[your_csv_file_path]', '[X_column_name]', '[Y_column_name]')
cat.load_model()

e.g.

cat.load_csv('product.csv', 'product name', 'category')
cat.load_model()

OR

cat.load_model('[your_csv_file_path]', '[X_column_name]', '[Y_column_name]')

e.g.

cat.load_model('product.csv', 'product name', 'category')

We can also specified how many LSTM layers you want by adding the corresponding parameter.

cat.load_model('product.csv', 'product name', 'category', num_of_LSTM = 4)

Then we just do one more easy step:

cat.train([number_of_iterations])

e.g.

cat.train(10)

If the number of iterations is not specified the number of iteration is 50. e.g.

cat.train() # 50 iterations

Save Weights

After training you can save your model on your local machine by using .save_weights([name]) method. (No file name suffix is needed)

cat.save_weights('my_model')

If the model is saved successfully we will see the folder appear in the same folder of your project

ProjectFolder
|---main.py
|---my_model
|   |---...
|   |
|
...

Load Pre-Trained Model

When we have saved the training file, we can reuse it in the future by just loading it back to a new instance.
There are 2 ways of doing it.

The RECOMMENDED way:

from catmod import CatMod

new_cat = CatMod(load_mode = True, load_file = 'my_model')

The other way:

from catmod import CatMod

new_cat = CatMod(glove_file_path = [the_GloVe_file_path_but_it_must_have_the_same_dimension_with_the_pre_trained_model])

new_cat.load_weights('my_model')

Prediction

Prediction the the most easiest and provide many customization so that everyone can predict and export the predict result in .pd, .csv, .xlsx at their own need. e.g.

X = df['X']
new_cat.predict(X, to_csv = True)

The result will export out the csv file that have both column X and Y together.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cat_mod-0.2.0.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

cat_mod-0.2.0-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file cat_mod-0.2.0.tar.gz.

File metadata

  • Download URL: cat_mod-0.2.0.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for cat_mod-0.2.0.tar.gz
Algorithm Hash digest
SHA256 5b67b9989a339607903172dda5bef578822f371368b88f50fbb335c3ad6f3bb3
MD5 c26ead0febdd55d2765be6da925355e3
BLAKE2b-256 838f7751f6090b3088ab0d7360b92fdbf8163ecfeab7fb0f9acc296af4d2a9bc

See more details on using hashes here.

File details

Details for the file cat_mod-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: cat_mod-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.5

File hashes

Hashes for cat_mod-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e0d68ded3b5635245f6e922f238bcedd20389e0a87351d5ae4d656dce822120f
MD5 34ba4af58ad7544ba990d4c0944e0c9f
BLAKE2b-256 c2bd8cca0f063c8de56267f36fc534378792d7025c50414ba51413ea3940e049

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page