Skip to main content

Catalyst fork compatible with PDM

Project description

Catalyst logo

Accelerated Deep Learning R&D

CodeFactor Pipi version Docs Docker PyPI Status

Twitter Telegram Slack Github contributors

codestyle docs catalyst integrations

python python python

os os os

Catalyst is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop.
Break the cycle – use the Catalyst!

Catalyst at PyTorch Ecosystem Day 2021

Catalyst poster

Catalyst at PyTorch Developer Day 2021

Catalyst poster


Getting started

pip install -U catalyst
import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl, utils
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)
loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=True), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
}

runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)

# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5)),
        dl.PrecisionRecallF1SupportCallback(input_key="logits", target_key="targets"),
    ],
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
)

# model evaluation
metrics = runner.evaluate_loader(
    loader=loaders["valid"],
    callbacks=[dl.AccuracyCallback(input_key="logits", target_key="targets", topk=(1, 3, 5))],
)

# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10

# model post-processing
model = runner.model.cpu()
batch = next(iter(loaders["valid"]))[0]
utils.trace_model(model=model, batch=batch)
utils.quantize_model(model=model)
utils.prune_model(model=model, pruning_fn="l1_unstructured", amount=0.8)
utils.onnx_export(model=model, batch=batch, file="./logs/mnist.onnx", verbose=True)

Step-by-step Guide

  1. Start with Catalyst — A PyTorch Framework for Accelerated Deep Learning R&D introduction.
  2. Try notebook tutorials or check minimal examples for first deep dive.
  3. Read blog posts with use-cases and guides.
  4. Learn machine learning with our "Deep Learning with Catalyst" course.
  5. And finally, join our slack if you want to chat with the team and contributors.

Table of Contents

Overview

Catalyst helps you implement compact but full-featured Deep Learning pipelines with just a few lines of code. You get a training loop with metrics, early-stopping, model checkpointing, and other features without the boilerplate.

Installation

Generic installation:

pip install -U catalyst
Specialized versions, extra requirements might apply

pip install catalyst[ml]         # installs ML-based Catalyst
pip install catalyst[cv]         # installs CV-based Catalyst
# master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade
# all available extensions are listed here:
# https://github.com/catalyst-team/catalyst/blob/master/setup.py

Catalyst is compatible with: Python 3.7+. PyTorch 1.4+.
Tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10, and Windows Subsystem for Linux.

Documentation

Minimal Examples

CustomRunner – PyTorch for-loop decomposition

import os
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
optimizer = optim.Adam(model.parameters(), lr=0.02)

train_data = MNIST(os.getcwd(), train=True)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
    "train": DataLoader(train_data, batch_size=32),
    "valid": DataLoader(valid_data, batch_size=32),
}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.engine.device))

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveMetric(compute_on_call=False)
            for key in ["loss", "accuracy01", "accuracy03"]
        }

    def handle_batch(self, batch):
        # model train/valid step
        # unpack the batch
        x, y = batch
        # run model forward pass
        logits = self.model(x)
        # compute the loss
        loss = F.cross_entropy(logits, y)
        # compute the metrics
        accuracy01, accuracy03 = metrics.accuracy(logits, y, topk=(1, 3))
        # log metrics
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)
        # run model backward pass
        if self.is_train_loader:
            self.engine.backward(loss)
            self.optimizer.step()
            self.optimizer.zero_grad()

    def on_loader_end(self, runner):
        for key in ["loss", "accuracy01", "accuracy03"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
)
# model inference
for logits in runner.predict_loader(loader=loaders["valid"]):
    assert logits.detach().cpu().numpy().shape[-1] == 10

ML - linear regression

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = dl.SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    num_epochs=8,
    verbose=True,
)

ML - multiclass classification

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples,) * num_classes).to(torch.int64)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=3,
    valid_loader="valid",
    valid_metric="accuracy03",
    minimize_valid_metric=False,
    verbose=True,
    callbacks=[
        dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=num_classes),
        # uncomment for extra metrics:
        # dl.PrecisionRecallF1SupportCallback(
        #     input_key="logits", target_key="targets", num_classes=num_classes
        # ),
        # dl.AUCCallback(input_key="logits", target_key="targets"),
        # catalyst[ml] required ``pip install catalyst[ml]``
        # dl.ConfusionMatrixCallback(
        #     input_key="logits", target_key="targets", num_classes=num_classes
        # ),
    ],
)

ML - multilabel classification

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes = int(1e4), int(1e1), 4
X = torch.rand(num_samples, num_features)
y = (torch.rand(num_samples, num_classes) > 0.5).to(torch.float32)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_classes)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=3,
    valid_loader="valid",
    valid_metric="accuracy01",
    minimize_valid_metric=False,
    verbose=True,
    callbacks=[
        dl.BatchTransformCallback(
            transform=torch.sigmoid,
            scope="on_batch_end",
            input_key="logits",
            output_key="scores"
        ),
        dl.AUCCallback(input_key="scores", target_key="targets"),
        # uncomment for extra metrics:
        # dl.MultilabelAccuracyCallback(input_key="scores", target_key="targets", threshold=0.5),
        # dl.MultilabelPrecisionRecallF1SupportCallback(
        #     input_key="scores", target_key="targets", threshold=0.5
        # ),
    ]
)

ML - multihead classification

import torch
from torch import nn, optim
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_samples, num_features, num_classes1, num_classes2 = int(1e4), int(1e1), 4, 10
X = torch.rand(num_samples, num_features)
y1 = (torch.rand(num_samples,) * num_classes1).to(torch.int64)
y2 = (torch.rand(num_samples,) * num_classes2).to(torch.int64)

# pytorch loaders
dataset = TensorDataset(X, y1, y2)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

class CustomModule(nn.Module):
    def __init__(self, in_features: int, out_features1: int, out_features2: int):
        super().__init__()
        self.shared = nn.Linear(in_features, 128)
        self.head1 = nn.Linear(128, out_features1)
        self.head2 = nn.Linear(128, out_features2)

    def forward(self, x):
        x = self.shared(x)
        y1 = self.head1(x)
        y2 = self.head2(x)
        return y1, y2

# model, criterion, optimizer, scheduler
model = CustomModule(num_features, num_classes1, num_classes2)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2])

class CustomRunner(dl.Runner):
    def handle_batch(self, batch):
        x, y1, y2 = batch
        y1_hat, y2_hat = self.model(x)
        self.batch = {
            "features": x,
            "logits1": y1_hat,
            "logits2": y2_hat,
            "targets1": y1,
            "targets2": y2,
        }

# model training
runner = CustomRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    num_epochs=3,
    verbose=True,
    callbacks=[
        dl.CriterionCallback(metric_key="loss1", input_key="logits1", target_key="targets1"),
        dl.CriterionCallback(metric_key="loss2", input_key="logits2", target_key="targets2"),
        dl.MetricAggregationCallback(metric_key="loss", metrics=["loss1", "loss2"], mode="mean"),
        dl.BackwardCallback(metric_key="loss"),
        dl.OptimizerCallback(metric_key="loss"),
        dl.SchedulerCallback(),
        dl.AccuracyCallback(
            input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_"
        ),
        dl.AccuracyCallback(
            input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_"
        ),
        # catalyst[ml] required ``pip install catalyst[ml]``
        # dl.ConfusionMatrixCallback(
        #     input_key="logits1", target_key="targets1", num_classes=num_classes1, prefix="one_cm"
        # ),
        # dl.ConfusionMatrixCallback(
        #     input_key="logits2", target_key="targets2", num_classes=num_classes2, prefix="two_cm"
        # ),
        dl.CheckpointCallback(
            logdir="./logs/one",
            loader_key="valid", metric_key="one_accuracy01", minimize=False, topk=1
        ),
        dl.CheckpointCallback(
            logdir="./logs/two",
            loader_key="valid", metric_key="two_accuracy03", minimize=False, topk=3
        ),
    ],
    loggers={"console": dl.ConsoleLogger(), "tb": dl.TensorboardLogger("./logs/tb")},
)

ML – RecSys

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst import dl

# sample data
num_users, num_features, num_items = int(1e4), int(1e1), 10
X = torch.rand(num_users, num_features)
y = (torch.rand(num_users, num_items) > 0.5).to(torch.float32)

# pytorch loaders
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, num_items)
criterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [2])

# model training
runner = dl.SupervisedRunner(
    input_key="features", output_key="logits", target_key="targets", loss_key="loss"
)
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    num_epochs=3,
    verbose=True,
    callbacks=[
        dl.BatchTransformCallback(
            transform=torch.sigmoid,
            scope="on_batch_end",
            input_key="logits",
            output_key="scores"
        ),
        dl.CriterionCallback(input_key="logits", target_key="targets", metric_key="loss"),
        # uncomment for extra metrics:
        # dl.AUCCallback(input_key="scores", target_key="targets"),
        # dl.HitrateCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        # dl.MRRCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        # dl.MAPCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        # dl.NDCGCallback(input_key="scores", target_key="targets", topk=(1, 3, 5)),
        dl.BackwardCallback(metric_key="loss"),
        dl.OptimizerCallback(metric_key="loss"),
        dl.SchedulerCallback(),
        dl.CheckpointCallback(
            logdir="./logs", loader_key="valid", metric_key="loss", minimize=True
        ),
    ]
)

CV - MNIST classification

import os
from torch import nn, optim
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST

model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.02)

train_data = MNIST(os.getcwd(), train=True)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
    "train": DataLoader(train_data, batch_size=32),
    "valid": DataLoader(valid_data, batch_size=32),
}

runner = dl.SupervisedRunner()
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    logdir="./logs",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
# uncomment for extra metrics:
#     callbacks=[
#         dl.AccuracyCallback(input_key="logits", target_key="targets", num_classes=10),
#         dl.PrecisionRecallF1SupportCallback(
#             input_key="logits", target_key="targets", num_classes=10
#         ),
#         dl.AUCCallback(input_key="logits", target_key="targets"),
#         # catalyst[ml] required ``pip install catalyst[ml]``
#         dl.ConfusionMatrixCallback(
#             input_key="logits", target_key="targets", num_classes=num_classes
#         ),
#     ]
)

CV - MNIST segmentation

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.losses import IoULoss


model = nn.Sequential(
    nn.Conv2d(1, 1, 3, 1, 1), nn.ReLU(),
    nn.Conv2d(1, 1, 3, 1, 1), nn.Sigmoid(),
)
criterion = IoULoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

train_data = MNIST(os.getcwd(), train=True)
valid_data = MNIST(os.getcwd(), train=False)
loaders = {
    "train": DataLoader(train_data, batch_size=32),
    "valid": DataLoader(valid_data, batch_size=32),
}

class CustomRunner(dl.SupervisedRunner):
    def handle_batch(self, batch):
        x = batch[self._input_key]
        x_noise = (x + torch.rand_like(x)).clamp_(0, 1)
        x_ = self.model(x_noise)
        self.batch = {self._input_key: x, self._output_key: x_, self._target_key: x}

runner = CustomRunner(
    input_key="features", output_key="scores", target_key="targets", loss_key="loss"
)
# model training
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    num_epochs=1,
    callbacks=[
        dl.IOUCallback(input_key="scores", target_key="targets"),
        dl.DiceCallback(input_key="scores", target_key="targets"),
        dl.TrevskyCallback(input_key="scores", target_key="targets", alpha=0.2),
    ],
    logdir="./logdir",
    valid_loader="valid",
    valid_metric="loss",
    minimize_valid_metric=True,
    verbose=True,
)

CV - MNIST metric learning

import os
from torch.optim import Adam
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data import HardTripletsSampler
from catalyst.contrib.datasets import MnistMLDataset, MnistQGDataset
from catalyst.contrib.losses import TripletMarginLossWithSampler
from catalyst.contrib.models import MnistSimpleNet
from catalyst.data.sampler import BatchBalanceClassSampler


# 1. train and valid loaders
train_dataset = MnistMLDataset(root=os.getcwd())
sampler = BatchBalanceClassSampler(
    labels=train_dataset.get_labels(), num_classes=5, num_samples=10, num_batches=10
)
train_loader = DataLoader(dataset=train_dataset, batch_sampler=sampler)

valid_dataset = MnistQGDataset(root=os.getcwd(), gallery_fraq=0.2)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=1024)

# 2. model and optimizer
model = MnistSimpleNet(out_features=16)
optimizer = Adam(model.parameters(), lr=0.001)

# 3. criterion with triplets sampling
sampler_inbatch = HardTripletsSampler(norm_required=False)
criterion = TripletMarginLossWithSampler(margin=0.5, sampler_inbatch=sampler_inbatch)

# 4. training with catalyst Runner
class CustomRunner(dl.SupervisedRunner):
    def handle_batch(self, batch) -> None:
        if self.is_train_loader:
            images, targets = batch["features"].float(), batch["targets"].long()
            features = self.model(images)
            self.batch = {"embeddings": features, "targets": targets,}
        else:
            images, targets, is_query = \
                batch["features"].float(), batch["targets"].long(), batch["is_query"].bool()
            features = self.model(images)
            self.batch = {"embeddings": features, "targets": targets, "is_query": is_query}

callbacks = [
    dl.ControlFlowCallbackWrapper(
        dl.CriterionCallback(input_key="embeddings", target_key="targets", metric_key="loss"),
        loaders="train",
    ),
    dl.ControlFlowCallbackWrapper(
        dl.CMCScoreCallback(
            embeddings_key="embeddings",
            labels_key="targets",
            is_query_key="is_query",
            topk=[1],
        ),
        loaders="valid",
    ),
    dl.PeriodicLoaderCallback(
        valid_loader_key="valid", valid_metric_key="cmc01", minimize=False, valid=2
    ),
]

runner = CustomRunner(input_key="features", output_key="embeddings")
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    callbacks=callbacks,
    loaders={"train": train_loader, "valid": valid_loader},
    verbose=False,
    logdir="./logs",
    valid_loader="valid",
    valid_metric="cmc01",
    minimize_valid_metric=False,
    num_epochs=10,
)

CV - MNIST GAN

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.layers import GlobalMaxPool2d, Lambda

latent_dim = 128
generator = nn.Sequential(
    # We want to generate 128 coefficients to reshape into a 7x7x128 map
    nn.Linear(128, 128 * 7 * 7),
    nn.LeakyReLU(0.2, inplace=True),
    Lambda(lambda x: x.view(x.size(0), 128, 7, 7)),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(128, 1, (7, 7), padding=3),
    nn.Sigmoid(),
)
discriminator = nn.Sequential(
    nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    GlobalMaxPool2d(),
    nn.Flatten(),
    nn.Linear(128, 1),
)

model = nn.ModuleDict({"generator": generator, "discriminator": discriminator})
criterion = {"generator": nn.BCEWithLogitsLoss(), "discriminator": nn.BCEWithLogitsLoss()}
optimizer = {
    "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
    "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
}
train_data = MNIST(os.getcwd(), train=False)
loaders = {"train": DataLoader(train_data, batch_size=32)}

class CustomRunner(dl.Runner):
    def predict_batch(self, batch):
        batch_size = 1
        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device)
        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        return generated_images

    def handle_batch(self, batch):
        real_images, _ = batch
        batch_size = real_images.shape[0]

        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device)

        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        # Combine them with real images
        combined_images = torch.cat([generated_images, real_images])

        # Assemble labels discriminating real from fake images
        labels = \
            torch.cat([torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))]).to(self.engine.device)
        # Add random noise to the labels - important trick!
        labels += 0.05 * torch.rand(labels.shape).to(self.engine.device)

        # Discriminator forward
        combined_predictions = self.model["discriminator"](combined_images)

        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.engine.device)
        # Assemble labels that say "all real images"
        misleading_labels = torch.zeros((batch_size, 1)).to(self.engine.device)

        # Generator forward
        generated_images = self.model["generator"](random_latent_vectors)
        generated_predictions = self.model["discriminator"](generated_images)

        self.batch = {
            "combined_predictions": combined_predictions,
            "labels": labels,
            "generated_predictions": generated_predictions,
            "misleading_labels": misleading_labels,
        }


runner = CustomRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    loaders=loaders,
    callbacks=[
        dl.CriterionCallback(
            input_key="combined_predictions",
            target_key="labels",
            metric_key="loss_discriminator",
            criterion_key="discriminator",
        ),
        dl.BackwardCallback(metric_key="loss_discriminator"),
        dl.OptimizerCallback(
            optimizer_key="discriminator",
            metric_key="loss_discriminator",
        ),
        dl.CriterionCallback(
            input_key="generated_predictions",
            target_key="misleading_labels",
            metric_key="loss_generator",
            criterion_key="generator",
        ),
        dl.BackwardCallback(metric_key="loss_generator"),
        dl.OptimizerCallback(
            optimizer_key="generator",
            metric_key="loss_generator",
        ),
    ],
    valid_loader="train",
    valid_metric="loss_generator",
    minimize_valid_metric=True,
    num_epochs=20,
    verbose=True,
    logdir="./logs_gan",
)

# visualization (matplotlib required):
# import matplotlib.pyplot as plt
# %matplotlib inline
# plt.imshow(runner.predict_batch(None)[0, 0].cpu().numpy())

CV - MNIST VAE

import os
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl, metrics
from catalyst.contrib.datasets import MNIST

LOG_SCALE_MAX = 2
LOG_SCALE_MIN = -10

def normal_sample(loc, log_scale):
    scale = torch.exp(0.5 * log_scale)
    return loc + scale * torch.randn_like(scale)

class VAE(nn.Module):
    def __init__(self, in_features, hid_features):
        super().__init__()
        self.hid_features = hid_features
        self.encoder = nn.Linear(in_features, hid_features * 2)
        self.decoder = nn.Sequential(nn.Linear(hid_features, in_features), nn.Sigmoid())

    def forward(self, x, deterministic=False):
        z = self.encoder(x)
        bs, z_dim = z.shape

        loc, log_scale = z[:, : z_dim // 2], z[:, z_dim // 2 :]
        log_scale = torch.clamp(log_scale, LOG_SCALE_MIN, LOG_SCALE_MAX)

        z_ = loc if deterministic else normal_sample(loc, log_scale)
        z_ = z_.view(bs, -1)
        x_ = self.decoder(z_)

        return x_, loc, log_scale

class CustomRunner(dl.IRunner):
    def __init__(self, hid_features, logdir, engine):
        super().__init__()
        self.hid_features = hid_features
        self._logdir = logdir
        self._engine = engine

    def get_engine(self):
        return self._engine

    def get_loggers(self):
        return {
            "console": dl.ConsoleLogger(),
            "csv": dl.CSVLogger(logdir=self._logdir),
            "tensorboard": dl.TensorboardLogger(logdir=self._logdir),
        }

    @property
    def num_epochs(self) -> int:
        return 1

    def get_loaders(self):
        loaders = {
            "train": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
            "valid": DataLoader(MNIST(os.getcwd(), train=False), batch_size=32),
        }
        return loaders

    def get_model(self):
        model = self.model if self.model is not None else VAE(28 * 28, self.hid_features)
        return model

    def get_optimizer(self, model):
        return optim.Adam(model.parameters(), lr=0.02)

    def get_callbacks(self):
        return {
            "backward": dl.BackwardCallback(metric_key="loss"),
            "optimizer": dl.OptimizerCallback(metric_key="loss"),
            "checkpoint": dl.CheckpointCallback(
                self._logdir,
                loader_key="valid",
                metric_key="loss",
                minimize=True,
                topk=3,
            ),
        }

    def on_loader_start(self, runner):
        super().on_loader_start(runner)
        self.meters = {
            key: metrics.AdditiveMetric(compute_on_call=False)
            for key in ["loss_ae", "loss_kld", "loss"]
        }

    def handle_batch(self, batch):
        x, _ = batch
        x = x.view(x.size(0), -1)
        x_, loc, log_scale = self.model(x, deterministic=not self.is_train_loader)

        loss_ae = F.mse_loss(x_, x)
        loss_kld = (
            -0.5 * torch.sum(1 + log_scale - loc.pow(2) - log_scale.exp(), dim=1)
        ).mean()
        loss = loss_ae + loss_kld * 0.01

        self.batch_metrics = {"loss_ae": loss_ae, "loss_kld": loss_kld, "loss": loss}
        for key in ["loss_ae", "loss_kld", "loss"]:
            self.meters[key].update(self.batch_metrics[key].item(), self.batch_size)

    def on_loader_end(self, runner):
        for key in ["loss_ae", "loss_kld", "loss"]:
            self.loader_metrics[key] = self.meters[key].compute()[0]
        super().on_loader_end(runner)

    def predict_batch(self, batch):
        random_latent_vectors = torch.randn(1, self.hid_features).to(self.engine.device)
        generated_images = self.model.decoder(random_latent_vectors).detach()
        return generated_images

runner = CustomRunner(128, "./logs", dl.CPUEngine())
runner.run()
# visualization (matplotlib required):
# import matplotlib.pyplot as plt
# %matplotlib inline
# plt.imshow(runner.predict_batch(None)[0].cpu().numpy().reshape(28, 28))

AutoML - hyperparameters optimization with Optuna

import os
import optuna
import torch
from torch import nn
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.datasets import MNIST


def objective(trial):
    lr = trial.suggest_loguniform("lr", 1e-3, 1e-1)
    num_hidden = int(trial.suggest_loguniform("num_hidden", 32, 128))

    train_data = MNIST(os.getcwd(), train=True)
    valid_data = MNIST(os.getcwd(), train=False)
    loaders = {
        "train": DataLoader(train_data, batch_size=32),
        "valid": DataLoader(valid_data, batch_size=32),
    }
    model = nn.Sequential(
        nn.Flatten(), nn.Linear(784, num_hidden), nn.ReLU(), nn.Linear(num_hidden, 10)
    )
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    criterion = nn.CrossEntropyLoss()

    runner = dl.SupervisedRunner(input_key="features", output_key="logits", target_key="targets")
    runner.train(
        model=model,
        criterion=criterion,
        optimizer=optimizer,
        loaders=loaders,
        callbacks={
            "accuracy": dl.AccuracyCallback(
                input_key="logits", target_key="targets", num_classes=10
            ),
            # catalyst[optuna] required ``pip install catalyst[optuna]``
            "optuna": dl.OptunaPruningCallback(
                loader_key="valid", metric_key="accuracy01", minimize=False, trial=trial
            ),
        },
        num_epochs=3,
    )
    score = trial.best_score
    return score

study = optuna.create_study(
    direction="maximize",
    pruner=optuna.pruners.MedianPruner(
        n_startup_trials=1, n_warmup_steps=0, interval_steps=1
    ),
)
study.optimize(objective, n_trials=3, timeout=300)
print(study.best_value, study.best_params)

Config API - minimal example

runner:
  _target_: catalyst.runners.SupervisedRunner
  model:
    _var_: model
    _target_: torch.nn.Sequential
    args:
      - _target_: torch.nn.Flatten
      - _target_: torch.nn.Linear
        in_features: 784  # 28 * 28
        out_features: 10
  input_key: features
  output_key: &output_key logits
  target_key: &target_key targets
  loss_key: &loss_key loss

run:
  # ≈ stage 1
  - _call_: train  # runner.train(...)

    criterion:
      _target_: torch.nn.CrossEntropyLoss

    optimizer:
      _target_: torch.optim.Adam
      params:  # model.parameters()
        _var_: model.parameters
      lr: 0.02

    loaders:
      train:
        _target_: torch.utils.data.DataLoader
        dataset:
          _target_: catalyst.contrib.datasets.MNIST
          root: data
          train: y
        batch_size: 32

      &valid_loader_key valid:
        &valid_loader
        _target_: torch.utils.data.DataLoader
        dataset:
          _target_: catalyst.contrib.datasets.MNIST
          root: data
          train: n
        batch_size: 32

    callbacks:
      - &accuracy_metric
        _target_: catalyst.callbacks.AccuracyCallback
        input_key: *output_key
        target_key: *target_key
        topk: [1,3,5]
      - _target_: catalyst.callbacks.PrecisionRecallF1SupportCallback
        input_key: *output_key
        target_key: *target_key

    num_epochs: 1
    logdir: logs
    valid_loader: *valid_loader_key
    valid_metric: *loss_key
    minimize_valid_metric: y
    verbose: y

  # ≈ stage 2
  - _call_: evaluate_loader  # runner.evaluate_loader(...)
    loader: *valid_loader
    callbacks:
      - *accuracy_metric
catalyst-run --config example.yaml

Tests

All Catalyst code, features, and pipelines are fully tested. We also have our own catalyst-codestyle and a corresponding pre-commit hook. During testing, we train a variety of different models: image classification, image segmentation, text classification, GANs, and much more. We then compare their convergence metrics in order to verify the correctness of the training procedure and its reproducibility. As a result, Catalyst provides fully tested and reproducible best practices for your deep learning research and development.

Blog Posts

Talks

Community

Accelerated with Catalyst

Research Papers

Blog Posts

Competitions

Toolkits

Other

See other projects at the GitHub dependency graph.

If your project implements a paper, a notable use-case/tutorial, or a Kaggle competition solution, or if your code simply presents interesting results and uses Catalyst, we would be happy to add your project to the list above! Do not hesitate to send us a PR with a brief description of the project similar to the above.

Contribution Guide

We appreciate all contributions. If you are planning to contribute back bug-fixes, there is no need to run that by us; just send a PR. If you plan to contribute new features, new utility functions, or extensions, please open an issue first and discuss it with us.

User Feedback

We've created feedback@catalyst-team.com as an additional channel for user feedback.

  • If you like the project and want to thank us, this is the right place.
  • If you would like to start a collaboration between your team and Catalyst team to improve Deep Learning R&D, you are always welcome.
  • If you don't like Github Issues and prefer email, feel free to email us.
  • Finally, if you do not like something, please, share it with us, and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Acknowledgments

Since the beginning of the Сatalyst development, a lot of people have influenced it in a lot of different ways.

Catalyst.Team

Catalyst.Contributors

Trusted by

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Catalyst - Accelerated deep learning R&D},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

catalyst_pdm-22.4.1.tar.gz (321.0 kB view details)

Uploaded Source

Built Distribution

catalyst_pdm-22.4.1-py3-none-any.whl (446.9 kB view details)

Uploaded Python 3

File details

Details for the file catalyst_pdm-22.4.1.tar.gz.

File metadata

  • Download URL: catalyst_pdm-22.4.1.tar.gz
  • Upload date:
  • Size: 321.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for catalyst_pdm-22.4.1.tar.gz
Algorithm Hash digest
SHA256 e3ca724cbf5b631cba409307d5103c2295e34341fe68272d982d6c5a4ec8ba0a
MD5 da392084e195b3ba3c88ffa75fd102b8
BLAKE2b-256 e7d2e71bf9eabb7ddab8d26e2deb536a1b7eb64d3e46413424ebeee9e179ec2e

See more details on using hashes here.

File details

Details for the file catalyst_pdm-22.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for catalyst_pdm-22.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fa3a6b1fea39c5931d04b014033c4458eb7e17759b7415c352039eda31dc7189
MD5 9637573f2cb7607f6aac1b52db8da4ec
BLAKE2b-256 55142af8dcf18c22488df22ad64703e60eff6a1d578f949a0f33ec417d849e68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page