Skip to main content

Open AI Gym to play 1v1 Catan against a random bot

Project description

Catanatron Gym

For reinforcement learning purposes, we provide an Open AI Gym environment. To use:

pip install catanatron_gym

Make your training loop, ensuring to respect env.get_valid_actions().

import random
import gym

env = gym.make("catanatron_gym:catanatron-v0")
observation = env.reset()
for _ in range(1000):
  action = random.choice(env.get_valid_actions()) # your agent here (this takes random actions)

  observation, reward, done, info = env.step(action)
  if done:
      observation = env.reset()
env.close()

For action documentation see here.

For observation documentation see here.

You can access env.game.state and build your own "observation" (features) vector as well.

Stable-Baselines3 Example

Catanatron works well with SB3, and better with the Maskable models of the SB3 Contrib repo. Here a small example of how it may work.

import gym
import numpy as np
from sb3_contrib.common.maskable.policies import MaskableActorCriticPolicy
from sb3_contrib.common.wrappers import ActionMasker
from sb3_contrib.ppo_mask import MaskablePPO

def mask_fn(env) -> np.ndarray:
    valid_actions = env.get_valid_actions()
    mask = np.zeros(env.action_space.n, dtype=np.float32)
    mask[valid_actions] = 1

    return np.array([bool(i) for i in mask])


# Init Environment and Model
env = gym.make("catanatron_gym:catanatron-v0")
env = ActionMasker(env, mask_fn)  # Wrap to enable masking
model = MaskablePPO(MaskableActorCriticPolicy, env, verbose=1)

# Train
model.learn(total_timesteps=1_000_000)

Configuration

You can also configure what map to use, how many vps to win, among other variables in the environment, with the config keyword argument. See source for details.

from catanatron import Color
from catanatron.players.weighted_random import WeightedRandomPlayer


def my_reward_function(game, p0_color):
    winning_color = game.winning_color()
    if p0_color == winning_color:
        return 100
    elif winning_color is None:
        return 0
    else:
        return -100

# 3-player catan on a "Mini" map (7 tiles) until 6 points.
env = gym.make(
    "catanatron_gym:catanatron-v0",
    config={
        "map_type": "MINI",
        "vps_to_win": 6,
        "enemies": [WeightedRandomPlayer(Color.RED), WeightedRandomPlayer(Color.ORANGE)],
        "reward_function": my_reward_function,
        "representation": "mixed",
    },
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

catanatron_gym-3.2.0.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

catanatron_gym-3.2.0-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file catanatron_gym-3.2.0.tar.gz.

File metadata

  • Download URL: catanatron_gym-3.2.0.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.6

File hashes

Hashes for catanatron_gym-3.2.0.tar.gz
Algorithm Hash digest
SHA256 00d551b171c1523f4d93d955c6560343db200442569768f24e9c4d2b49da53c7
MD5 527c2470a8671fa42bcabec053abe1c6
BLAKE2b-256 6434c70ffcc649326dde48e9eadd6f4efa097dfe671f1d2fc6f64d5e7faf917d

See more details on using hashes here.

File details

Details for the file catanatron_gym-3.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for catanatron_gym-3.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ae6cf34c32dff20bfeecc30bf0a8a38494f62e8e4c6d0e6dab9944370f3780a2
MD5 393b568203c04f20ed3a840b7fd5710d
BLAKE2b-256 7639bb7bface5bd09589e233b8a1d5759e88993bbdec2373dc1e013d8e251006

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page