Skip to main content

Open AI Gym to play 1v1 Catan against a random bot

Project description

Catanatron Gym

For reinforcement learning purposes, we provide an Open AI Gym environment. To use:

pip install catanatron_gym

Make your training loop, ensuring to respect env.get_valid_actions().

import random
import gymnasium as gym

env = gym.make("catanatron_gym:catanatron-v1")
observation, info = env.reset()
for _ in range(1000):
  # your agent here (this takes random actions)
  action = random.choice(env.unwrapped.get_valid_actions())
  observation, reward, terminated, truncated, info = env.step(action)
  done = terminated or truncated
  if done:
      observation, info = env.reset()
env.close()

For action documentation see here.

For observation documentation see here.

You can access env.game.state and build your own "observation" (features) vector as well.

Stable-Baselines3 Example

Catanatron works well with SB3, and better with the Maskable models of the SB3 Contrib repo. Here a small example of how it may work.

import gymnasium as gym
import numpy as np
from sb3_contrib.common.maskable.policies import MaskableActorCriticPolicy
from sb3_contrib.common.wrappers import ActionMasker
from sb3_contrib.ppo_mask import MaskablePPO

def mask_fn(env) -> np.ndarray:
    valid_actions = env.get_valid_actions()
    mask = np.zeros(env.action_space.n, dtype=np.float32)
    mask[valid_actions] = 1

    return np.array([bool(i) for i in mask])


# Init Environment and Model
env = gym.make("catanatron_gym:catanatron-v1")
env = ActionMasker(env, mask_fn)  # Wrap to enable masking
model = MaskablePPO(MaskableActorCriticPolicy, env, verbose=1)

# Train
model.learn(total_timesteps=1_000_000)

Configuration

You can also configure what map to use, how many vps to win, among other variables in the environment, with the config keyword argument. See source for details.

from catanatron import Color
from catanatron.players.weighted_random import WeightedRandomPlayer


def my_reward_function(game, p0_color):
    winning_color = game.winning_color()
    if p0_color == winning_color:
        return 100
    elif winning_color is None:
        return 0
    else:
        return -100

# 3-player catan on a "Mini" map (7 tiles) until 6 points.
env = gym.make(
    "catanatron_gym:catanatron-v1",
    config={
        "map_type": "MINI",
        "vps_to_win": 6,
        "enemies": [WeightedRandomPlayer(Color.RED), WeightedRandomPlayer(Color.ORANGE)],
        "reward_function": my_reward_function,
        "representation": "mixed",
    },
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

catanatron_gym-4.0.0.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

catanatron_gym-4.0.0-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file catanatron_gym-4.0.0.tar.gz.

File metadata

  • Download URL: catanatron_gym-4.0.0.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.3

File hashes

Hashes for catanatron_gym-4.0.0.tar.gz
Algorithm Hash digest
SHA256 e2d2afa7a061bacd2d01300929f9a1fb53d0598463c8b63b6023ec429d81a719
MD5 03f2cd3aefff0a26308b9b76560d52f5
BLAKE2b-256 c6f1b72ab3a8a996180238a86ab6bea198c4c38eb52cd9711ce0b28727956455

See more details on using hashes here.

File details

Details for the file catanatron_gym-4.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for catanatron_gym-4.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1fba36b0778d3e44317f2594b678f01338ef9c18462ea3e2ad351a8ef981f157
MD5 c6c2aa82b549b03654882997442e2a01
BLAKE2b-256 83b9e425bb49a92ef9db8776d5c782ffa1219f1400378874cb965ec3c02f1148

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page