Skip to main content

This Library converts categorical data of any kind {integer, float, strings} into discrete values{1,2,3... # Classes}.

Project description

This package can be used to convert dataset into numerical categorical data. This can be utilized for the pre-processing of various kinds of data for many Machine Learning Models. There are various features available such as normalizing the data to make the data more useful for the model. This function will work on any kind of data in the DataFrame.

IMPORT:

from categorical_encode.categorical import categorical

The Parameters:-

  • dataframe: The Input DataFrame(X) which you want to categorically encode.

  • normalize: This parameter determines if it will be between 0-1(1 included) or 1 to no. of classes (1 - no. of classes). default:False

  • drop_columns: This specifies the dataframe columns that need to be dropped as they are useless. default: No Columns

  • drop_na: This drops empty values (NaN) if is set to True. default: False

  • target_columns: This creates the target DataFrame(Y) without applying any Encoding. default: No Columns

Return

This Returns Two DataFrame (X,Y) if target_columns are provided Else only the Input dataframe (X) which is encoded.

Example:

from categorical_encode.categorical import categorical

df = categorical(dataframe = df, normalize= True)

This returns df as categorically encoded column-wise for all the columns having values between 0-1(1 included).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

categorical_encode-0.2.1.tar.gz (2.4 kB view details)

Uploaded Source

File details

Details for the file categorical_encode-0.2.1.tar.gz.

File metadata

  • Download URL: categorical_encode-0.2.1.tar.gz
  • Upload date:
  • Size: 2.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.8

File hashes

Hashes for categorical_encode-0.2.1.tar.gz
Algorithm Hash digest
SHA256 5bdcdb4e19575a54973b2888452c020196822d51f12cb6a201e5038b1f703403
MD5 9ce06dc3dc09f4f16d8f84fa47c2c1ff
BLAKE2b-256 93c7cce31d4ed1834eb2cfb238c412d23c0c0f0e9e5af108b7c82a9a66b66b5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page