Skip to main content

Fast on-demand sampling from categorical distributions

Project description

Categorical Sampler
-----

Install from pip: `pip install categorical-sampler`

Let’s generate a probability distribution to get us started. First, sample a bunch of random numbers to determine probability “scores”.


>>> from random import random
>>> k = 10**6
>>> scores = [random() for i in range(k)]
>>> total = sum(scores)
>>> probabilities = [s / total for s in scores]


We've normalized the scores to sum to 1, i.e. make
them into proper probabilities, but actually the categorical sampler will do that for us, so it’s not necessary:

>>> from categorical import Categorical as C
>>> my_sampler = C(scores)
>>> print my_sampler.sample()
487702

Comparing to numpy, assuming we draw 1000 individual samples *individually*:


>>> from numpy.random import choice
>>> import time
>>>
>>> def time_numpy():
>>> start = time.time()
>>> for i in range(1000):
>>> choice(k, p=probabilities)
>>> print time.time() - start
>>>
>>> def time_my_alias():
>>> start = time.time()
>>> for i in range(1000):
>>> my_sampler.sample()
>>> print time.time() - start
>>>
>>> time_numpy()
31.0555009842
>>> time_my_alias()
0.0127031803131

Get the actual probability of a given outcome:

>>> my_sampler.get_probability(487702)
1.0911282101090306e-06

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
categorical-0.1.4.tar.gz (4.4 kB) Copy SHA256 hash SHA256 Source None Jul 14, 2016

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page