No project description provided
Project description
category
Categorical transformation for data science
Installation
pip install works for this library.
pip install category
Single Category
>>> from category import Category
>>> book = Category(['a', 'b', 'c', 'Category_d', 'e', 'f', 'g', 'h', 'i', 'j'], pad_mst = False)
>>> book.i2c[2]
'c'
>>> book.c2i[['Category_d','f']]
array([3, 5])
You can set pad_mst
to True
to handle the missing token
>>> from category import Category
>>> book = Category(['a', 'b', 'c', 'Category_d', 'e', 'f', 'g', 'h', 'i', 'j'], pad_mst = True)
>>> book.i2c[2] # the 1st token is the missing token, not 'a' any more
'b'
>>> book.c2i[['Stranger','Category_d','Unknown','f']]
array([0, 4, 0, 6])
Multi-Category
>>> from category import (Category, MultiCategory)
>>> cates = list(f"category{i}" for i in range(1000))
>>> multi_cate = MultiCategory(Category(cates, pad_mst = True))
>>> multi_cate.string_to_index("category42, category108")
array([42, 108])
You can also try to convert a list of strings, containing multicategorical info (which the data input is frequently used in tabular data), to nhot encoded array, and back
>>> nhot = multi_cate.batch_strings_to_nhot(["category42, category108","category999"])
>>> multi_cate.nhot_to_list(nhot)[0]
["category42", "category108"]
Performance
The running speed of this library mostly depends on python dictionary and numpy operations. Though python is a 'slow' language, such application is pretty fast, and not easy to improve using other language.
Here we compare the this library with the Rust implementation
References
- GitHub
- PyPI package
- Rust implementation
- Used in Tai-Chi engine, a verstile user-friendly deep learning library
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file category-0.1.0.tar.gz
.
File metadata
- Download URL: category-0.1.0.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cedb3b5e2d1b56ab302404a61b254beccc422a9ed743aa36567d4cca687c53a6 |
|
MD5 | 5d47449fbfd2bbfacc869cb870efd16a |
|
BLAKE2b-256 | d09ee6d5f07016b53ae17e9cdd445b27a78659ef00401ff57fc72b5796b5ed60 |
File details
Details for the file category-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: category-0.1.0-py3-none-any.whl
- Upload date:
- Size: 17.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ac14d7d9eaec9657b80f3bf91257b79db85b0318eac28370e5d497187fd08dd |
|
MD5 | ca6f4a5a85016ddf36154c42011de94b |
|
BLAKE2b-256 | d238e74c362dc3cb09ed13588237180f4046af687752cbdbdb893c2e8f300a46 |