Skip to main content

A collection sklearn transformers to encode categorical variables as numeric

Project description

[![Travis Status](https://travis-ci.org/scikit-learn-contrib/categorical-encoding.svg?branch=master)](https://travis-ci.org/scikit-learn-contrib/categorical-encoding) [![Coveralls Status](https://coveralls.io/repos/scikit-learn-contrib/categorical-encoding/badge.svg?branch=master&service=github)](https://coveralls.io/r/scikit-learn-contrib/categorical-encoding) [![CircleCI Status](https://circleci.com/gh/scikit-learn-contrib/categorical-encoding.svg?style=shield&circle-token=:circle-token)](https://circleci.com/gh/scikit-learn-contrib/categorical-encoding/tree/master) [![DOI](https://zenodo.org/badge/47077067.svg)](https://zenodo.org/badge/latestdoi/47077067)

A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques.

Encoding Methods

  • Backward Difference Contrast [2][3]
  • BaseN [6]
  • Binary [5]
  • Hashing [1]
  • Helmert Contrast [2][3]
  • LeaveOneOut [4]
  • Ordinal [2][3]
  • One-Hot [2][3]
  • Polynomial Contrast [2][3]
  • Sum Contrast [2][3]
  • Target Encoding [7]
  • Weight of Evidence [8]

Usage

The package by itself comes with a single module and an estimator. Before installing the module you will need numpy, statsmodels, and scipy.

To install the module execute:

`shell $ python setup.py install `

or

` pip install category_encoders `

or

` conda install -c conda-forge category_encoders `

To use:

import category_encoders as ce

encoder = ce.BackwardDifferenceEncoder(cols=[…]) encoder = ce.BaseNEncoder(cols=[…]) encoder = ce.BinaryEncoder(cols=[…]) encoder = ce.HashingEncoder(cols=[…]) encoder = ce.HelmertEncoder(cols=[…]) encoder = ce.LeaveOneOutEncoder(cols=[…]) encoder = ce.OneHotEncoder(cols=[…]) encoder = ce.OrdinalEncoder(cols=[…]) encoder = ce.PolynomialEncoder(cols=[…]) encoder = ce.SumEncoder(cols=[…]) encoder = ce.TargetEncoder(cols=[…]) encoder = ce.WOEEncoder(cols=[…])

All of these are fully compatible sklearn transformers, so they can be used in pipelines or in your existing scripts. If the cols parameter isn’t passed, every non-numeric column will be encoded. Please see the docs for transformer-specific configuration options.

Examples

from category_encoders import * import pandas as pd from sklearn.datasets import load_boston

# prepare some data bunch = load_boston() y = bunch.target X = pd.DataFrame(bunch.data, columns=bunch.feature_names)

# use binary encoding to encode two categorical features enc = BinaryEncoder(cols=[‘CHAS’, ‘RAD’]).fit(X, y)

# transform the dataset numeric_dataset = enc.transform(X)

In the examples directory, there is an example script used to benchmark different encoding techniques on various datasets.

The datasets used in the examples are car, mushroom, and splice datasets from the UCI dataset repository, found here:

[datasets](https://archive.ics.uci.edu/ml/datasets)

Contributing

Category encoders is under active development, if you’d like to be involved, we’d love to have you. Check out the CONTRIBUTING.md file or open an issue on the github project to get started.

License

BSD 3-Clause

References:

  1. Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009). Feature Hashing for Large Scale Multitask Learning. Proc. ICML.
  2. Contrast Coding Systems for categorical variables. UCLA: Statistical Consulting Group. from https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/.
  3. Gregory Carey (2003). Coding Categorical Variables. from http://psych.colorado.edu/~carey/Courses/PSYC5741/handouts/Coding%20Categorical%20Variables%202006-03-03.pdf
  4. Strategies to encode categorical variables with many categories. from https://www.kaggle.com/c/caterpillar-tube-pricing/discussion/15748#143154.
  5. Beyond One-Hot: an exploration of categorical variables. from http://www.willmcginnis.com/2015/11/29/beyond-one-hot-an-exploration-of-categorical-variables/
  6. BaseN Encoding and Grid Search in categorical variables. from http://www.willmcginnis.com/2016/12/18/basen-encoding-grid-search-category_encoders/
  7. A Preprocessing Scheme for High-Cardinality Categorical Attributes in Classification and Prediction Problems. from https://kaggle2.blob.core.windows.net/forum-message-attachments/225952/7441/high%20cardinality%20categoricals.pdf
  8. Weight of Evidence (WOE) and Information Value Explained. from https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
category_encoders-1.3.0-py2.py3-none-any.whl (61.4 kB) Copy SHA256 hash SHA256 Wheel py2.py3
category_encoders-1.3.0.tar.gz (29.8 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page