Skip to main content

a quick tool base dict for mysql and sqlite

Project description

Cator

PyPI PyPI - Downloads PyPI - Python Version PyPI - License

简介

支持 mysql和sqlite数据库, 在现有连接对象Connection 基础上进行增强

返回数据统一为dict 字典,提高脚本书写速度

安装

pip install cator

支持的mysql连接库(任选其一即可):

  • pymysql
  • mysql-connector-python
  • mysqlclient

使用示例

1、获取新的连接Database 对象

Database 可以适用各种场景

import cator

# mysql 
db_url = "mysql://root:123456@127.0.0.1:3306/data?charset=utf8&autocommit=true"

# open Database
db = cator.connect(db_url)

# close
db.close()

支持的连接url,其他参数可参考所使用的链接库的文档

# mysql autocommit=true参数指定自动提交
mysql://root:123456@127.0.0.1:3306/data?charset=utf8&autocommit=true

# mysql+reconnect 模式可以指定断线重连
mysql+reconnect://root:123456@127.0.0.1:3306/data?autocommit=true

# sqlite
sqlite:///data.db?isolation_level=null

2、Database对象 CURD使用示例

创建测试表

create table if not exists person (
    id int PRIMARY KEY auto_increment,
    name varchar(20),
    age int
)

CURD

# 执行原样sql 返回cursor对象
cursor = db.execute("show tables")


# insert
sql = "insert into person (`name`, `age`) values (:name, :age)"
data = [{'name': 'Tom', 'age': 23}]
row_count = db.insert(sql, data)
print(row_count) # 1


# insert_one
sql = "insert into person (`name`, `age`) values (:name, :age)"
data = {'name': 'Tom', 'age': 23}
row_id = db.insert_one(sql, data)
print(row_id) # 5


# select
sql = 'select * from person limit :limit'
data = {'limit': 1}
rows = db.select(sql, data)
# [{'id': 2, 'name': 'Tom', 'age': 23}]


# select_one
sql = 'select * from person where id = :id'
data = {'id': 5}
row = db.select_one(sql, data)
print(row)
# {'id': 5, 'name': 'Tom', 'age': 23}


# update
sql = "update person set name = :name where id = :id"
data = {
    'name': 'Jack',
    'id': 1
}
row_count = db.update(sql, data)
print(row_count) # 1


# delete
sql = "delete from person where id = :id"
data = {
    'id': 1
}
row_count = db.delete(sql, data)
print(row_count) # 1

Table操作

Table 类提供了一系列的简化操作

注意:使用table操作,仅支持?或者%s作为占位符

Table 仅适用于单表操作,多表操作可以使用 Database对象

# 获取 Table 对象
table = db.table('person')


# insert_one
data = {'name': 'Tom', 'age': 23}
row_id = table.insert_one(data)
print(row_id) # 6
# INSERT INTO `person` ( `name`, `age` ) VALUES ( %(name)s, %(age)s )


# insert
data = [
    {'name': 'Tom', 'age': 23},
    {'name': 'Steve', 'age': 25}
]
row_count = table.insert(data)
print(row_count) # 2
# INSERT INTO `person` ( `age`, `name` ) VALUES ( %(age)s, %(name)s )


# update_by_id
data = {'name': 'Jackk'}
row_count = table.update_by_id(uid=1, data=data)
print(row_count) # 1
# UPDATE `person` SET `name` = %(name)s WHERE `id` = %(id)s


# delete_by_id
row_count = table.delete_by_id(uid=6)
print(row_count) # 1
# DELETE FROM `person` WHERE `id` = %(id)s


# where select
rows = (table
       .where("id > ?", 1)
       .order_by("id desc")
       .limit(1)
       .select())
# SELECT * FROM `person` WHERE id > %s ORDER BY id desc LIMIT %s
print(rows)
# [{'id': 9, 'name': 'Steve', 'age': 25}]


# select_by_id
row = table.select_by_id(uid=5)
print(row) # {'id': 5, 'name': 'Tom', 'age': 23}
# SELECT * FROM `person` WHERE `id` = %(id)s


# select count
total = table.select_count()
print(total) # 5
# SELECT count(*) as total FROM `person`

# where select_one
ret = (table
       .where("id = ?", 2)
       .select_one()
       )
# SELECT * FROM `person` WHERE id = 2 LIMIT 1

print(ret)
# {'id': 2, 'name': 'Tom', 'age': 23}


# where select count
total = (table
         .where("age > ?", 10)
         .select_count()
         )
print(total)  # 7
# SELECT count(*) as total FROM `person` WHERE age > %s


# where delete
row_count = (table
             .where("id = ?", 1)
             .delete()
             )
# DELETE FROM `person` WHERE id = %s

print(row_count) # 0

# where update
row_count = (table
       .where("id = ?", 1)
       .update({'age': 24})
       )
# UPDATE `person` SET `age` = %s WHERE id = %s
print(row_count) # 1


# select page
query = table.where("age > ?", 1)

total = query.select_count('id')
print(total)  # 7
# SELECT count(`id`) FROM `person` WHERE age > %s

rows = query.select_page(2, 1)
# SELECT * FROM `person` WHERE age > %s LIMIT %s OFFSET %s
print(rows)
# [{'id': 3, 'name': 'Tom', 'age': 23}]


# increment
row_count = table.where("id = ?", 4).increment('age', 1)
# UPDATE `person` SET `age` = `age` + %s WHERE id = %s
print(row_count)


# decrement
row_count = table.where("id = ?", 4).decrement('age', 1)
# UPDATE `person` SET `age` = `age` - %s WHERE id = %s
print(row_count)

2、扩展现有连接

DatabaseProxy类接收一个Connection对象,只需要实现以下4个方法即可

class Connection(ABC):
    def close(self):
        pass

    def commit(self):
        pass

    def rollback(self):
        pass

    def cursor(self):
        pass

2-1、扩展 peewee

通过DatabaseProxy类,使得peewee原生sql查询进行增强

from peewee import MySQLDatabase
from cator import DatabaseProxy


config = {
    'host': 'localhost',
    'port': 3306,
    'user': 'root',
    'password': '123456',
    'database': 'data',
    'charset': 'utf8mb4',
}

db = MySQLDatabase(**config)

# use cator database proxy
db_proxy = DatabaseProxy(db)

2-2、扩展 pymysql

import pymysql
from cator import DatabaseProxy

config = {
    'host': '127.0.0.1',
    'user': 'root',
    'password': '123456',
    'database': 'data',
    'port': 3306
}

connection = pymysql.connect(**config)
proxy_db = DatabaseProxy(connection)

rows = proxy_db.select('select * from person where id = :id', {'id': 15})
print(rows)
proxy_db.close()

支持的占位符

无论使用什么数据库驱动都支持4种占位符:

paramstyle support Meaning example
qmark OK Question mark style ...WHERE name=?
numeric - Numeric, positional style ...WHERE name=:1
named OK Named style ...WHERE name=:name
format OK ANSI C printf format codes ...WHERE name=%s
pyformat OK Python extended format codes ...WHERE name=%(name)s

显示sql日志

import logging

logger = logging.getLogger('cator')
logger.setLevel(level=logging.DEBUG)

注意问题

  1. 使用时需注意链接超时问题
  2. cator支持了autocommit自动提交,默认关闭,如有需要可以打开,
  3. 如果需要执行事务就需要关闭自动提交

cator基于以下模块进行了改进

  1. myquery:https://github.com/mouday/myquery
  2. aquery:https://github.com/mouday/aquery
  3. puremysql https://github.com/mouday/puremysql
  4. pythink https://github.com/mouday/pythink

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cator-1.0.11.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

cator-1.0.11-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file cator-1.0.11.tar.gz.

File metadata

  • Download URL: cator-1.0.11.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for cator-1.0.11.tar.gz
Algorithm Hash digest
SHA256 4607ab19fc95693e54057134dbb06a01fb3355e4afe3013b2201702c08a88eb3
MD5 022de77b9645116403a250f7b8dc7bdf
BLAKE2b-256 03ed55a1485fedb871115459fc491a7ea26befd9294e22e98fe1c9d87dcc1cef

See more details on using hashes here.

File details

Details for the file cator-1.0.11-py3-none-any.whl.

File metadata

  • Download URL: cator-1.0.11-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for cator-1.0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 12cfc4c95f417e815452f8d0d4101284e502e1eedcc675af7ae391e79a727b25
MD5 6f57169fa711e8742f941f7becac80a3
BLAKE2b-256 8dadc6bf03adc105f86cb7f79bf9169cc72c16e00f0bcdb18b49460865f61c6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page